1. Li, J. Y., J. L. Guo, Y. B. Gan, and Q. Z. Liu, "The tri-band performance of sleeve dipole antenna," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2081-2092, 2005.
doi:10.1163/156939305775570413 Google Scholar
2. Khaleghi, A., "Diversity techniques with parallel dipole antennas: Radiation pattern analysis," Progress In Electromagnetics Research, Vol. 64, 23-42, 2006.
doi:10.2528/PIER06062401 Google Scholar
3. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip-FED two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701 Google Scholar
4. Jaw, J.-L., F.-S. Chen, and D.-F. Chen, "Compact dualband CPW-fed slotted patch antenna for 2.4/5 GHz WLAN operation," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1947-1955, 2009.
doi:10.1163/156939309789932584 Google Scholar
5. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011. Google Scholar
6. Franklin, C. S., "Improvements in wireless telegraph and telephone aerials," British Patent, No. 242, 342, 1924. Google Scholar
7. Ghosh, S., A. Chakraborty, and S. Sanyal, "Loaded wire antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 54, 19-36, 2005.
doi:10.2528/PIER04080501 Google Scholar
8. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems. Part I: The vertical grounding electrode," Progress In Electromagnetics Research, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101 Google Scholar
9. Solbach, K., "Microstrip-franklin antenna," IEEE Trans. Antennas Propagat., Vol. 30, No. 4, 773-775, 1982.
doi:10.1109/TAP.1982.1142845 Google Scholar
10. Judasz, T. J. and B. B. Balsley, "Improved theoretical and experimental models for the coaxial colinear antenna," IEEE Trans. Antennas Propagat., Vol. 37, 289-296, 1989.
doi:10.1109/8.18724 Google Scholar
11. Herscovici, N., Z. Sipus, and P.-S. Kildal, "The cylindrical omnidirectional patch antenna," IEEE Trans. Antennas Propagat., Vol. 49, 1746-1753, Dec. 2001.
doi:10.1109/8.982455 Google Scholar
12. Bancroft, R. and B. Bateman, "An omnidirectional microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 52, 3151-3153, Nov. 2004. Google Scholar
13. Bancroft, R. and B. Bateman, "An omnidirectional planar microstrip antenna with low sidelobes," Microwave and Optical Technology Letters, Vol. 42, 68-69, Jul. 2004. Google Scholar
14. Bancroft, R., "Design parameters of an omnidirectional planar microstrip antenna," Microwave and Optical Technology Letters, Vol. 47, No. 5, 414-418, Dec. 2005.
doi:10.1002/mop.21187 Google Scholar
15. Li, J.-Y. and Y.-B. Gan, "Multi-band characteristic of open sleeve antenna," Progress In Electromagnetics Research, Vol. 58, 135-148, 2006.
doi:10.2528/PIER05090301 Google Scholar
16. Wei, K., Z. Zhang, W. Chen, and Z. Fengm, M. F. Iskander, "A triband shunt-fed omnidirectional planar dipole array," IEEE Antennas Wireless Propag. Lett, Vol. 9, 850-85, 2010.
doi:10.1109/LAWP.2010.2069077 Google Scholar
17. Alkanhal, M. A. S., "Composite compact triple-band microstrip antennas," Progress In Electromagnetics Research, Vol. 93, 221-236, 2009.
doi:10.2528/PIER09050407 Google Scholar
18. Tze-Meng, O., K. G. Tan, and A. W. Reza, "A dual-band omni-directional microstrip antenna," Progress In Electromagnetics Research, Vol. 106, 363-376, 2010.
doi:10.2528/PIER10052411 Google Scholar
19. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications ," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404 Google Scholar
20. Wu, Y.-J., B.-H. Sun, J.-F. Li, and Q.-Z. Liu, "Triple-band omni-directional antenna for WLAN application," Progress In Electromagnetics Research, Vol. 76, 477-484, 2007.
doi:10.2528/PIER07080601 Google Scholar
21. Shum, Y. H., K. M. Luk, and C. H. Chan, "Multi-band base station antenna with compact microstrip resonant cell filters," IEE Proc. - Microw. Antennas Propag., Vol. 151, No. 6, 2004.
doi:10.1049/ip-map:20041047 Google Scholar
22. Suh, Y. H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 2002. Google Scholar
23. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band ," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507 Google Scholar
24. Toh, W. K., X. M. Qing, and Z. N. Chen, "A planar dualband antenna array," IEEE Trans. Antennas Propagat., Vol. 59, No. 3, 833-838, Mar. 2011.
doi:10.1109/TAP.2010.2103039 Google Scholar
25. Isom, R., M. F. Iskander, Z. Yun, and Z. Zhang, "Design and development of multiband coaxial continuous transerse stub (CTS) antenna arrays," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, Aug. 2004.
doi:10.1109/TAP.2004.832336 Google Scholar
26. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, Mass., 1979.
27. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, Inc., New York, 2005.