1. Appleby, R. and R. N. Anderton, "Millimeter-wave and submilimeter-wave imaging for security surveillance," Proceedings of the IEEE, Vol. 95, No. 2, 1683-1690, Aug. 2007. Google Scholar
2. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetic Research Letters, Vol. 1, 197-204, 2008. Google Scholar
3. Kemp, M. C., A. Glauser, and C. Baker, "Recent developments in people screening using terahertz technology --- Seeing the world through terahertz eyes," Proc. SPIE, Vol. 6212, 27-34, 2006. Google Scholar
4. Appleby, R. and H. B. Wallace, "Standoff detection of weapons and contraband in the 100 GHz to 1 THz region," IEEE Trans. on Ant. and Prop., Vol. 55, No. 11, 2944-2956, Nov. 2007. Google Scholar
5. Federici, J. F., B. Schulkin, F. Huang, G. Dale, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications --- Explosives, weapons and drugs," Semiconductor Sci. Tecnol., Vol. 20, No. 7, S266-S280, Jul. 2005. Google Scholar
6. Sheen, D., D. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. MTT, Vol. 49, No. 9, 1581-1592, 2001. Google Scholar
7. Volkov, L. V., A. I. Voronko, N. L. Volkova, and A. R. Karapetyan, "Active MMW imaging technique for contraband detection," 33rd European Microwave Conference, 531-534, 2003. Google Scholar
8. Clark, S. E., J. A. Lovberg, C. A. Martin, and V. Kolinko, "Passive millimeter-wave imaging for airborne and security applications," Proc. SPIE, Vol. 5077, 16-21, 2003. Google Scholar
9. Goldsmith, P. F., C. T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, "Focal plane imaging systems for millimetre wavelengths," IEEE Trans. MTT, Vol. 41, No. 10, 1664-1675, Oct. 1993. Google Scholar
10. Zouaoui, R., R. Czarny, F. Diaz, A. Khy, and T. Lamarque, "Multi-sensor millimeter-wave system for hidden objects detection by collaborative screening," Proc. SPIE, Vol. 8022, 802209, 2011. Google Scholar
11. Sheen, D. M., T. E. Hall, R. H. Severtsen, D. L. McMakin, B. K. Hatchell, and P. L. J. Valdez, "Standoff concealed weapon detection using a 350-GHz radar imaging system," Proc. SPIE, Vol. 7670, 767008, 2010. Google Scholar
12. Sheen, D. M., D. L. McMakin, W. M. Lechelt, and J. W. Griffin, "Circularly polarized millimeter-wave imaging for personnel screening," Proc. SPIE, Vol. 5789, 117-126, 2005. Google Scholar
13. Sheen, D. M., D. L. McMakin, T. E. Hall, and R. H. Severtsen, "Active millimeter-wave standoff and portal imaging techniques for personnel screening," IEEE Conference on Technologies for Homeland Security, 440-447, 2009. Google Scholar
14. Harmer, S. W., D. A. Andrews, N. D. Rezgui, and N. J. Bowring, "Detection of handguns by their complex natural resonant frequencies," IET Microw. Antennas Propag., Vol. 4, No. 9, 1182-1190, Sep. 2010. Google Scholar
15. Hausner, J. and N. West, "Radar based concealed threat detector," IEEE MTT-S Int. Microwave Symp., 765-768, 2007. Google Scholar
16. Harmer, S., D. Andrews, N. Bowring, N. Rezgui, and M. Southgate, "Ultra wide band detection of on body concealed weapons using the out of plane polarized late time response," Proc. SPIE, Vol. 7485, 748505, 2009. Google Scholar
37. Rezgui, N., D. Andrews, N. Bowring, S. Harmer, and M. Southgate, "Standoff detection of concealed handguns," Proc. SPIE, Vol. 6948, 69480L, 2008. Google Scholar
18. Andrews, D. A., S. E. Smith, N. Rezgui, N. J. Bowring, M. Southgate, and S. W. Harmer, "A swept millimetre-wave technique for the detection of concealed weapons and thin layers of dielectric material with or without fragmentation," Proc. SPIE, Vol. 7309, 73090H, 2009. Google Scholar
19. Andrews, D. A., N. Rezgui, S. E. Smith, N. J. Bowring, M. Southgate, and J. G. Baker, "Detection of concealed explosives at stand-o® distances using wide band swept millimetre wave," Proc. SPIE, Vol. 711, 711719, 2008. Google Scholar
20. Andrews, D. A., N. J. Bowring, M. Southgate, E. Guest, S. W. Harmer, and A. Atiah, "A multifaceted active swept millimetre-wave approach to the detection of concealed weapons," Proc. SPIE, Vol. 7117, 711706, 2008. Google Scholar
21. Bowring, N. J., J. G. Baker, N. Rezgui, M. Southgate, and J. F. Alder, "Active millimetre wave detection of concealed layesr of dielectric material," Proc. SPIE, Vol. 6540, 65401M, 2007. Google Scholar
22. Yong, L., Y. T. Gui, N. Bowring, and N. Rezgui, "A microwave measurement system for metallic object detection using swept frequency radar," Proc. SPIE, Vol. 7117, 71170K, 2008. Google Scholar
23. Novak, D., R. Waterhouse, and A. Farnham, "Millimeter-wave weapons detection system," 34th Applied Imagery and Pattern Recognition Workshop, AIPR'05, 15-20, 2005. Google Scholar
24. Ibrahim, A. S., K. J. Ray Liu, D. Novak, and R. B. Waterhouse, "A subspace signal processing technique for concealed weapons detection," Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2, 401-404, 2007. Google Scholar
25. Baum, C. E., "On the singularity expansion method for the solution of electromagnetic interaction problems,", Air Force Weapons Lab., Interaction Notes, Note 88, 1971. Google Scholar
26. Wang, Y. and N. Shuley, "Complex resonant frequencies for the identification of simple objects in free space and lossy environments," Progress In Electromagnetic Research, Vol. 27, 1-18, 2000. Google Scholar
27. Wang, Y., I. D. Longstaff, and C. J. Leat, "Measurement of complex natural resonances of targets in free space and lossy media," Progress In Electromagnetic Research, Vol. 29, 221-230, 2000. Google Scholar
28. Berni, A. J., "Target identification by natural resonant estimation," IEEE Trans. Aerospace Electron. Syst., Vol. 11, No. 2, 147-154, 1975. Google Scholar
29. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Application, Vol. 19, No. 5, 655-669, 2005. Google Scholar
30. Toribio, R., J. Saillard, and P. Pouliguen, "Identification of radar targets in resonance zone: E-pulse techniques," Progress In Electromagnetic Research 43, 39-58, 2003. Google Scholar
31. Baum, C. E., "The singularity expansion method: Background and developments," IEEE Antennas and Propagation Society Newsletter, 1986. Google Scholar
32. Wang, Y., I. D. Longstaff, C. J. Leat, and N. V. Shuley, "Complex natural resonances of conducting planar objects buried in a dielectric half-space," IEEE Trans. Geoscience Remote Sensing, Vol. 39, No. 6, 1183-1189, 2001. Google Scholar
33. Lui, H. and N. V. Shuley, "Radar target identification using a banded E-pulse technique," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3874-3881, 2006. Google Scholar
34. Chauveau, J., N. de Beaucoudrey, and J. Saillard, "Characteri zation of perfectly conducting targets in resonance domain with their quality of resonance," Progress In Electromagnetic Research, Vol. 74, 69-84, 2007. Google Scholar
35. Robinson, L. A., W. B. Weir, and L. Young, "An RF time-domain reflectometer not in real time," GMTT International Microwave Symposium Digest, Vol. 72, No. 1, 30-32, May 1972. Google Scholar
36. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 229-234, 1989. Google Scholar
37. Goswami, J. C. and A. E. Hoefel, "Algorithms for estimating instantaneous frequency," Signal Processing, Vol. 84, No. 8, 1423-1427, 2004. Google Scholar
38. Hua, Y. and T. K. Sarkar, "A discussion of E-pulse method and Prony's method for radar resonance retrieval from scattered field," IEEE Trans. Antennas Propag., Vol. 37, No. 7, 944-946, 1989. Google Scholar
39. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine, Vol. 37, No. 1, 48-55, 1995. Google Scholar
40. Lee, J. H. and H. T. Kim, "Natural frequency extraction using generalized pencil-of-function method and transient response reconstruction," Progress In Electromagnetic Research C, Vol. 4, 65-84, 2008. Google Scholar
41. Kitamura, M., J. Takada, and K. Araki, "A model order estimation in the matrix pencil method for the transient response of a microwave circuit discontinuity," IEICE Trans. Electron., Vol. E82-C, No. 11, 2081-2086, 1999. Google Scholar
42. Fenn, A. J., D. H. Temme, W. P. Delaney, and W. E. Courtney, "The development of phased-array RADAR technology," Lincoln Laboratory Journal, Vol. 12, No. 2, 2000. Google Scholar
43. Lestari, A. A., A. G. Yarovoy, and L. P. Ligthart, "RC-loaded bow-tie antenna for improved pulse radiation," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 2555-2563, 2004. Google Scholar
44. Kaatze, U., "Complex permittivity of water as a function of frequency and temperature," J. Chem. Eng. Data, Vol. 34, No. 4, 371-374, 1989. Google Scholar
45. Leahy, R. M. and B. D. Jeffs, "On the design of maximally sparse beamforming arrays," IEEE TR. Anten. Prop., Vol. 39, 1178-1187, 1991. Google Scholar