1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letter, Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Hornak, J. P., "The Basics of MRI,", URL, http://www.cis.rit.edu/htbooks/mri/index.html, 1996. Google Scholar
3. Freire, M. J., L. Jelinek, R. Marques, and M. Lapine, "On the applications of μ= -1 metamaterial lenses for magnetic resonance imaging," Journal of Magnetic Resonance, Vol. 203, 81, 2010.
doi:10.1016/j.jmr.2009.12.005 Google Scholar
4. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μ= -1 metamaterial lens for magnetic resonance imaging," Applied Physics Letter, Vol. 93, 231108, 2008.
doi:10.1063/1.3043725 Google Scholar
6. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, No. 5505, 2001.
doi:10.1126/science.291.5505.849 Google Scholar
7. Radu, X., D. Garray, and C. Craeye, "Toward a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, No. 2, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005 Google Scholar
8. Wiggins, G. C., J. R. Polimeni, A. Potthast, M. Schmitt, V. Alagappan, and L. L. Wald, "96-channel receive-only head coil for 3 Tesla: design optimization and evaluation," Magnetic Resonance in Medicine, Vol. 62, No. 3, 754-762, 2009.
doi:10.1002/mrm.22028 Google Scholar
9. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
10. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504 Google Scholar
11. Insko, E. K., M. A. Elliott, J. C. Schotland, and J. S. Leigh, "Generalized reciprocity," Journal of Magnetic Resonance, Vol. 131, No. 111, 1998. Google Scholar
12. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials," Physical Review A, Vol. 78, 013842, 2008.
doi:10.1103/PhysRevA.78.013842 Google Scholar
13. Rennings, A., P. Schneider, S. Otto, D. Erni, C. Caloz, and M. E. Ladd, "A CRLH zeroth-order resonant antenna (ZORA) with high near-¯eld polarization purity used as an RF coil element for ultra high field MRI," Metamaterials, 13-16, 2010. Google Scholar
14. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401 Google Scholar
15. Lapine, M., L. Jelinek, M. J. Freire, and R. Marques, "Realistic metamaterial lenses: Limitations imposed by discrete structure," Physical Review B, Vol. 82, 165124, 2010.
doi:10.1103/PhysRevB.82.165124 Google Scholar
16. Sydoruk, O., E. Tatartschuk, E. Shamonina, and L. Solymar, "Resonant frequency of singly split single ring resonators: An analytical and numerical study," Metamaterials, 632-634, 2008. Google Scholar
17. Algarin, J. M., M. J. Freire, M. A. Lopez, M. Lapine, P. M. Jakob, V. C. Behr, and R. Marques, "Analysis of the resolution of split-ring metamaterial lenses with application in parallel magnetic resonance imaging," Applied Physics Letter, Vol. 98, 014105, 2011.
doi:10.1063/1.3533394 Google Scholar
18. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, 547, 1994. Google Scholar