Vol. 124
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-13
Frequency-Selective Nanostructured Plasmonic Absorber by Highly Lossy Interface Mode
By
Progress In Electromagnetics Research, Vol. 124, 511-525, 2012
Abstract
We report on an existence of a highly lossy interface mode (HLIM) in a designed plasmonic nanostructure for perfect absorption of the incident optical waves. Interactions between the single thin-metallic-layer ($TML$) and slits arrays for excitation of the HLIM in the proposed plasmonic absorber are investigated, and eigenfrequency formula for the HLIM is derived. Analytical and numerical results show that the HLIM is frequency-selective, opens a narrow and steep absorption band in photonic stopband of the slits arrays. Due to the HLIM lossy characteristic, surface plasmon polaritons are significantly trapped at the TML interface with absorption close to 100%.
Citation
Yongkang Gong, Kang Li, Jungang Huang, N. J. Copner, Antony Davies, Leiran Wang, and Tao Duan, "Frequency-Selective Nanostructured Plasmonic Absorber by Highly Lossy Interface Mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER11121903
References

1. Parsons, A. D. and D. J. Pedder, "Thin-film infrared absorber structures for advanced thermal detectors," J. Vac. Sci. Technol. A, Vol. 6, 1686-1689, 1988.
doi:10.1116/1.575308        Google Scholar

2. Hayden, O., R. Agarwal, and C. M. Lieber, "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection," Nat. Mater., Vol. 5, 352-356, 2006.
doi:10.1038/nmat1635        Google Scholar

3. Tian, B., X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, Vol. 449, 885-889, 2007.
doi:10.1038/nature06181        Google Scholar

4. Richards, P. L., "Bolometers for infrared and millimeter waves," J. Appl. Phys., Vol. 76, No. 1, 1994.
doi:10.1063/1.357128        Google Scholar

5. Longhi, S., "Pi-symmetric laser absorber," Phys. Rev. A, Vol. 82, 031801, 2010.
doi:10.1103/PhysRevA.82.031801        Google Scholar

6. Law, M., L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater., Vol. 4, 455-459, 2005.
doi:10.1038/nmat1387        Google Scholar

7. Zukalova, M., A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Gratzel, "Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells," Nano Lett., Vol. 5, 1789-1792, 2005.
doi:10.1021/nl051401l        Google Scholar

8. Yang, Z. P., L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an extremely dark material made by a low-density nanotube array," Nano Lett., Vol. 8, 446, 2008.
doi:10.1021/nl072369t        Google Scholar

9. Kravets, V. G., S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.
doi:10.1103/PhysRevB.81.165401        Google Scholar

10. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, 2009.
doi:10.1103/PhysRevB.79.045131        Google Scholar

11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402        Google Scholar

12. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabricated and characterization," Phys. Rev. B, Vol. 78, 241103, 2008.
doi:10.1103/PhysRevB.78.241103        Google Scholar

13. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401        Google Scholar

14. Cia, M. N., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.        Google Scholar

15. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108        Google Scholar

16. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110        Google Scholar

17. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.        Google Scholar

18. Hao, J. M., J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.
doi:10.1063/1.3442904        Google Scholar

19. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.
doi:10.1063/1.3276072        Google Scholar

20. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano., Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603        Google Scholar

21. He, X. J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.        Google Scholar

22. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.
doi:10.1063/1.2936997        Google Scholar

23. Yang, J., X. H. Hu, X. Li, Z. Liu, Z. X. Liang, X. Y. Jiang, and J. Zi, "Broadband absorption enhancement in anisotropic metamaterials by mirror reflections," Phys. Rev. B, Vol. 80, 125103, 2009.
doi:10.1103/PhysRevB.80.125103        Google Scholar

24. Veronis, G., R. W. Dutton, and S. H. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys., Vol. 97, 093104, 2005.
doi:10.1063/1.1889248        Google Scholar

25. Sai, H. and H. Yugami, "Thermophotovoltaic generation with selective radiators based on tungsten surface gratings," Appl. Phys. Lett., Vol. 85, 3399, 2004.
doi:10.1063/1.1807031        Google Scholar

26. Liu, X. L., T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.
doi:10.1103/PhysRevLett.107.045901        Google Scholar

27. Gong, Y. K., Z. Y. Li, J. J. Fu, Y. H. Chen, G. X. Wang, H. Lu, L. R. Wang, and X. M. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect," Opt. Express, Vol. 19, 10193-10198, 2011.
doi:10.1364/OE.19.010193        Google Scholar

28. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. SÄonnichsen, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033        Google Scholar

29. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403        Google Scholar

30. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
doi:10.1021/nl902621d        Google Scholar

31. Xu, X., B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, "Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing," Nano Lett., Vol. 11, 3232-3238, 2011.
doi:10.1021/nl2014982        Google Scholar

32. Lal, S., S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, Vol. 1, 641-648, 2007.
doi:10.1038/nphoton.2007.223        Google Scholar

33. Mayer, K. M. and J. H. Hafner, "Localized surface plasmon resonance sensors," ACS Nano., Vol. 111, 3828-3857, 2011.        Google Scholar

34. Dionne, J. A., L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, Vol. 73, 035407-035415, 2006.
doi:10.1103/PhysRevB.73.035407        Google Scholar

35. Hill, M. T., M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express, Vol. 17, 11107-11112, 2009.
doi:10.1364/OE.17.011107        Google Scholar

36. Gong, Y. K., L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, "Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide," Optics Express, Vol. 17, 13727-13736, 2009.
doi:10.1364/OE.17.013727        Google Scholar

37. Neutens, P., P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, "Electrical detection of confined gap plasmons in metal-insulator-metal waveguides," Nat. Photonics, Vol. 3, 283-286, 2009.
doi:10.1038/nphoton.2009.47        Google Scholar

38. Shin, H. and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett., Vol. 96, 073907, 2006.
doi:10.1103/PhysRevLett.96.073907        Google Scholar

39. Davoyan, A. R., I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, "Nonlinear nanofocusing in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 105, 116804, 2010.
doi:10.1103/PhysRevLett.105.116804        Google Scholar

40. Capmany, J., M. A. Muriel, and S. Sales, J. J. Rubio, D. Pastor, "Microwave V-I transmission matrix formalism for the analysis of photonic circuits: Application to fiber bragg gratings," J. Lightwave Technol., Vol. 21, 3125-3134, 2003.
doi:10.1109/JLT.2003.819797        Google Scholar

41. Pannipitiya, A., I. D. Rukhlenko, and M. Premaratne, "Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions," IEEE. J. Phot., Vol. 3, 220-233, 2011.
doi:10.1109/JPHOT.2011.2126566        Google Scholar

42. Shelykh, I. A., M. Kaliteevski, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, "Interface photonic states at the boundary between a metal and a dielectric Bragg mirror," Phys. Stat. Sol. A, Vol. 204, 522, 2007.
doi:10.1002/pssa.200673231        Google Scholar

43. Vinogradov, A. P., A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, "Surface state peculiarities in one-dimensional photonic crystal interfaces," Phys. Rev. B, Vol. 74, 045128, 2006.
doi:10.1103/PhysRevB.74.045128        Google Scholar

44. Kavokin, A. V., I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Phys. Rev. B, Vol. 72, 075127, 2005.        Google Scholar

45. Kang, X., W. Tan, Z. Wang, and H. Chen, "Optic Tamm states: The Bloch-wave-expansion method," Phys. Rev. A, Vol. 79, 043832, 2009.
doi:10.1103/PhysRevA.79.043832        Google Scholar

46. Yanik, A. A., M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, "An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media," Nano Lett., Vol. 10, 4962-4969, 2010.
doi:10.1021/nl103025u        Google Scholar