Vol. 124
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-30
Hydrostatic Pressure Sensor Based on a Gold-Coated Fiber Modal Interferometer Using Lateral Offset Splicing of Single Mode Fiber
By
Progress In Electromagnetics Research, Vol. 124, 315-329, 2012
Abstract
A novel hydrostatic pressure sensor based on a gold-coated fiber modal interferometer (FMI) is proposed and demonstrated. Two single mode fibers (SMFs) are spliced with a lateral offset which forms a single-end FMI. The single-end FMI is gold-coated to enhance the reflectivity and to avoid the influence of any unwanted light from getting into the sensor. Relative reflection spectra of the proposed FMIs with different sensing SMF lengths or different lateral offsets are experimentally investigated. A high hydrostatic pressure sensor test system is proposed for the testing of the proposed FMI pressure sensor. The performance of a gold-coated FMI pressure sensor based on a 12-mm sensing SMF has been experimentally investigated. The proposed pressure sensor has a sensing range from 0 to 42 MPa and a sensitivity of 53 pm/MPa.
Citation
Daru Chen, and Xin Cheng, "Hydrostatic Pressure Sensor Based on a Gold-Coated Fiber Modal Interferometer Using Lateral Offset Splicing of Single Mode Fiber," Progress In Electromagnetics Research, Vol. 124, 315-329, 2012.
doi:10.2528/PIER11122307
References

1. Nikles, M., L. Thevenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett., Vol. 21, 758-760, 1996.
doi:10.1364/OL.21.000758        Google Scholar

2. Kersey, A. D., M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Ashins, M. A. Putnam, and E. J. Friebele , "Fiber grating sensors," J. Lightw. Technol., Vol. 15, 1442-1463, 1997.
doi:10.1109/50.618377        Google Scholar

3. Hill, K. O. and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol., Vol. 5, 1263-1276, 1997.
doi:10.1109/50.618320        Google Scholar

4. Farahani, M. A. and T. Gogolla, "Spontaneous raman scattering in optical fibers with modulated probe light for distributed temperature raman remote sensing," J. Lightw. Technol., Vol. 17, 1379-1391, 1999.
doi:10.1109/50.779159        Google Scholar

5. Guan, B.-O., H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, "Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 12, 675-677, 2000.
doi:10.1109/68.849081        Google Scholar

6. Culshaw, B., "Optical fiber sensor technologies: Opportunities and - perhaps - pitfalls," J. Lightw. Technol., Vol. 22, 39-50, 2004.
doi:10.1109/JLT.2003.822139        Google Scholar

7. Chen, D., C. Shu, and S. He, "Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode locking fiber laser ," Opt. Lett., Vol. 33, 1395-1397, 2008.
doi:10.1364/OL.33.001395        Google Scholar

8. Chen, D., W. Liu, M. Jiang, and S. He, "High resolution strain/temperature sensor system based on high finesse fiber Bragg grating Fabry-Perot cavity and wavelength demodulation in the time domain," J. Lightw. Technol., Vol. 27, 2477-2481, 2009.
doi:10.1109/JLT.2008.2011498        Google Scholar

9. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength FBG laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252        Google Scholar

10. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704        Google Scholar

11. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102        Google Scholar

12. Wang, B., G. Somesfalean, L. Mei, H. Zhou, C. Yan, and S. He, "Detection of gas concentration by correlation spectroscopy using a multi-wavelength fiber laser," Progress In Electromagnetics Research, Vol. 114, 469-479, 2011.        Google Scholar

13. Ni, J., X. M. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, "Microwave frequency measurement based on phase modulation to intensity modulation conversion using fiber Bragg grating," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5, 755-764, 2011.
doi:10.1163/156939311794827195        Google Scholar

14. Bock, W. J. and A. W. Domanski, "Highly hydrostatic pressure effects in highly birefringent optical fibers," J. Lightw. Technol., Vol. 7, 1279-1283, 1989.
doi:10.1109/50.32394        Google Scholar

15. Charasse, M. N., M. Turpin, and J. P. Le Pesant, "Dynamic pressure sensing with a side-hole birefringent optical fiber," Opt. Lett., Vol. 16, 1043-1045, 1991.
doi:10.1364/OL.16.001043        Google Scholar

16. Clowes, J. R., S. Syngellakis, and M. N. Zervas, "Pressure sensitivity of side-hole optical fiber sensors," IEEE Photon. Technol. Lett., Vol. 10, 857-859, 1998.
doi:10.1109/68.681509        Google Scholar

17. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fier-based Sagnac interferometer," Appl. Opt., Vol. 47, 2835-2839, 2008.
doi:10.1364/AO.47.002835        Google Scholar

18. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightw. Technol., Vol. 28, 1392-1397, 2010.        Google Scholar

19. Szczurowski, M. K., T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, "Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber," Opt. Express, Vol. 18, 12076-12087, 2010.
doi:10.1364/OE.18.012076        Google Scholar

20. Fu, H. Y., C. Wu, M. L. V. Tse, L. Zhang, K. C. D. Cheng, H. Y. Tam, B. O. Guan, and C. Lu, "High pressure sensor based on photonic crystal fiber for downhole application," Appl. Opt., Vol. 49, 2639-2644, 2010.
doi:10.1364/AO.49.002639        Google Scholar

21. Martynkien, T., G. Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 15113-15121, 2010.
doi:10.1364/OE.18.015113        Google Scholar

22. Chen, D., G. Hu, and L. Chen, "Dual-core photonic crystal fiber for hydrostatic pressure sensing," IEEE Photon. Technol. Lett., Vol. 23, 1851-1853, 2011.
doi:10.1109/LPT.2011.2170194        Google Scholar

23. Chen, D., G. Hu, M.-L. V. Tse, and H. Y. Tam, "Dual-core side-hole fiber for pressure sensing based on intensity detection," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5-6, 775-784, 2011.
doi:10.1163/156939311794827140        Google Scholar

24. Chen, D., M. L. V. Tse, C. Wu, G. Hu, H. Y. Tam, and L. Gao, "Highly birefringent four-hole fiber for pressure sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011.        Google Scholar

25. Zhu, Y. and A. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett., Vol. 17, 447-449, 2005.        Google Scholar

26. Wang, X., J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett., Vol. 31, 885-887, 2006.
doi:10.1364/OL.31.000885        Google Scholar

27. Wang, W., N. Wu, Y. Tian, C. Niezrecki, and X. Wang, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 9006-9014, 2010.
doi:10.1364/OE.18.009006        Google Scholar

28. Knight, J. C., J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science,, Vol. 282, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476        Google Scholar

29. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033        Google Scholar

30. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940        Google Scholar

31. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309        Google Scholar

32. Choudhury, P. K. and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
doi:10.2528/PIER10021104        Google Scholar

33. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325        Google Scholar

34. Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 13, 588-590, 2001.
doi:10.1109/68.924030        Google Scholar

35. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229        Google Scholar

36. Steel, M. J. and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonics crystal fibers," J. Lightw. Technol., Vol. 19, 495-503, 2001.
doi:10.1109/50.920847        Google Scholar

37. Sapulak, M., G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect," Appl. Opt., Vol. 44, 2652-2658, 2005.
doi:10.1364/AO.44.002652        Google Scholar

38. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114        Google Scholar

39. Yue, Y., G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett., Vol. 32, 469-471, 2007.
doi:10.1364/OL.32.000469        Google Scholar

40. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040        Google Scholar

41. Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., Vol. 25, 790-792, 2000.
doi:10.1364/OL.25.000790        Google Scholar

42. Ferrando, A., E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express, Vol. 9, 687-697, 2001.
doi:10.1364/OE.9.000687        Google Scholar

43. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843        Google Scholar

44. Shen, L. P., W. P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightw. Technol., Vol. 21, 1644-1651, 2003.
doi:10.1109/JLT.2003.814397        Google Scholar

45. Gerome, F., J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett., Vol. 29, 2725-2727, 2004.
doi:10.1364/OL.29.002725        Google Scholar

46. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728        Google Scholar

47. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627        Google Scholar

48. Varshney, S. K., T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express, Vol. 14, 3528-3540, 2006.
doi:10.1364/OE.14.003528        Google Scholar

49. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015        Google Scholar

50. Agrawal, A., N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, "Golden spiral photonic crystal fiber: Polarization and dispersion properties," Opt. Lett., Vol. 33, 2716-2718, 2008.
doi:10.1364/OL.33.002716        Google Scholar

51. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706        Google Scholar

52. Ju, J., W. Jin, and M. S. Demokan, "Design of single-polarization single mode photonics crystal fibers," J. Lightw. Technol., Vol. 24, 825-830, 2001.        Google Scholar

53. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, 1384-1340, 2003.
doi:10.1109/LPT.2003.818215        Google Scholar

54. Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 16, 182-184, 2004.
doi:10.1109/LPT.2003.819415        Google Scholar

55. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365        Google Scholar

56. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, 393-395, 2003.
doi:10.1364/OL.28.000393        Google Scholar

57. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.
doi:10.1364/OE.11.000818        Google Scholar

58. Folkenberg, J., M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express, Vol. 12, 956-960, 2004.
doi:10.1364/OPEX.12.000956        Google Scholar

59. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Eletron. Lett., Vol. 36, 1452-1253, 2000.
doi:10.1049/el:20000942        Google Scholar

60. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Swithable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, 1626-1628, 2005.        Google Scholar

61. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003        Google Scholar

62. Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: Measurement and future opportunities," Opt. Lett., Vol. 24, 1395-1397, 1999.
doi:10.1364/OL.24.001395        Google Scholar

63. Zhu, Z. and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber ," Opt. Express, Vol. 12, 791-796, 2004.
doi:10.1364/OPEX.12.000791        Google Scholar

64. Zhu, Z. and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 21, 249-257, 2004.
doi:10.1364/JOSAB.21.000249        Google Scholar

65. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285        Google Scholar

66. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, 151113-151115, 2007.
doi:10.1063/1.2722058        Google Scholar

67. Ritari, T., J. Tuominen, H. Ludvigsen, J. C. Petersen, T. SΦrensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal bandgap fibers," Opt. Express, Vol. 12, 4080-4087, 2004.
doi:10.1364/OPEX.12.004080        Google Scholar

68. Rindorf, L., J. B. Jensen, M. Dufva, L. H. Pedersen, P. T. HΦiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express, Vol. 14, 8224-8231, 2006.
doi:10.1364/OE.14.008224        Google Scholar

69. Wu, D. K. C., B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett., Vol. 34, 322-324, 2009.
doi:10.1364/OL.34.000322        Google Scholar

70. Qian, W. W., C.-L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei , "High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror," Opt. Lett., Vol. 36, 1548-1550, 2011.
doi:10.1364/OL.36.001548        Google Scholar

71. Chen, D., C. Wu, M.-L. V. Tse, and H. Y. Tam, "Hydrostatic pressure sensor based on mode interference of a few mode fiber," Progress In Electromagnetics Research, Vol. 119, 335-343, 2011.
doi:10.2528/PIER11071001        Google Scholar