1. Nikles, M., L. Thevenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett., Vol. 21, 758-760, 1996.
doi:10.1364/OL.21.000758 Google Scholar
2. Kersey, A. D., M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Ashins, M. A. Putnam, and E. J. Friebele , "Fiber grating sensors," J. Lightw. Technol., Vol. 15, 1442-1463, 1997.
doi:10.1109/50.618377 Google Scholar
3. Hill, K. O. and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol., Vol. 5, 1263-1276, 1997.
doi:10.1109/50.618320 Google Scholar
4. Farahani, M. A. and T. Gogolla, "Spontaneous raman scattering in optical fibers with modulated probe light for distributed temperature raman remote sensing," J. Lightw. Technol., Vol. 17, 1379-1391, 1999.
doi:10.1109/50.779159 Google Scholar
5. Guan, B.-O., H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, "Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 12, 675-677, 2000.
doi:10.1109/68.849081 Google Scholar
6. Culshaw, B., "Optical fiber sensor technologies: Opportunities and - perhaps - pitfalls," J. Lightw. Technol., Vol. 22, 39-50, 2004.
doi:10.1109/JLT.2003.822139 Google Scholar
7. Chen, D., C. Shu, and S. He, "Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode locking fiber laser ," Opt. Lett., Vol. 33, 1395-1397, 2008.
doi:10.1364/OL.33.001395 Google Scholar
8. Chen, D., W. Liu, M. Jiang, and S. He, "High resolution strain/temperature sensor system based on high finesse fiber Bragg grating Fabry-Perot cavity and wavelength demodulation in the time domain," J. Lightw. Technol., Vol. 27, 2477-2481, 2009.
doi:10.1109/JLT.2008.2011498 Google Scholar
9. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength FBG laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252 Google Scholar
10. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704 Google Scholar
11. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102 Google Scholar
12. Wang, B., G. Somesfalean, L. Mei, H. Zhou, C. Yan, and S. He, "Detection of gas concentration by correlation spectroscopy using a multi-wavelength fiber laser," Progress In Electromagnetics Research, Vol. 114, 469-479, 2011. Google Scholar
13. Ni, J., X. M. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, "Microwave frequency measurement based on phase modulation to intensity modulation conversion using fiber Bragg grating," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5, 755-764, 2011.
doi:10.1163/156939311794827195 Google Scholar
14. Bock, W. J. and A. W. Domanski, "Highly hydrostatic pressure effects in highly birefringent optical fibers," J. Lightw. Technol., Vol. 7, 1279-1283, 1989.
doi:10.1109/50.32394 Google Scholar
15. Charasse, M. N., M. Turpin, and J. P. Le Pesant, "Dynamic pressure sensing with a side-hole birefringent optical fiber," Opt. Lett., Vol. 16, 1043-1045, 1991.
doi:10.1364/OL.16.001043 Google Scholar
16. Clowes, J. R., S. Syngellakis, and M. N. Zervas, "Pressure sensitivity of side-hole optical fiber sensors," IEEE Photon. Technol. Lett., Vol. 10, 857-859, 1998.
doi:10.1109/68.681509 Google Scholar
17. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fier-based Sagnac interferometer," Appl. Opt., Vol. 47, 2835-2839, 2008.
doi:10.1364/AO.47.002835 Google Scholar
18. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightw. Technol., Vol. 28, 1392-1397, 2010. Google Scholar
19. Szczurowski, M. K., T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, "Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber," Opt. Express, Vol. 18, 12076-12087, 2010.
doi:10.1364/OE.18.012076 Google Scholar
20. Fu, H. Y., C. Wu, M. L. V. Tse, L. Zhang, K. C. D. Cheng, H. Y. Tam, B. O. Guan, and C. Lu, "High pressure sensor based on photonic crystal fiber for downhole application," Appl. Opt., Vol. 49, 2639-2644, 2010.
doi:10.1364/AO.49.002639 Google Scholar
21. Martynkien, T., G. Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 15113-15121, 2010.
doi:10.1364/OE.18.015113 Google Scholar
22. Chen, D., G. Hu, and L. Chen, "Dual-core photonic crystal fiber for hydrostatic pressure sensing," IEEE Photon. Technol. Lett., Vol. 23, 1851-1853, 2011.
doi:10.1109/LPT.2011.2170194 Google Scholar
23. Chen, D., G. Hu, M.-L. V. Tse, and H. Y. Tam, "Dual-core side-hole fiber for pressure sensing based on intensity detection," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5-6, 775-784, 2011.
doi:10.1163/156939311794827140 Google Scholar
24. Chen, D., M. L. V. Tse, C. Wu, G. Hu, H. Y. Tam, and L. Gao, "Highly birefringent four-hole fiber for pressure sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011. Google Scholar
25. Zhu, Y. and A. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett., Vol. 17, 447-449, 2005. Google Scholar
26. Wang, X., J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett., Vol. 31, 885-887, 2006.
doi:10.1364/OL.31.000885 Google Scholar
27. Wang, W., N. Wu, Y. Tian, C. Niezrecki, and X. Wang, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 9006-9014, 2010.
doi:10.1364/OE.18.009006 Google Scholar
28. Knight, J. C., J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science,, Vol. 282, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476 Google Scholar
29. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033 Google Scholar
30. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940 Google Scholar
31. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309 Google Scholar
32. Choudhury, P. K. and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
doi:10.2528/PIER10021104 Google Scholar
33. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325 Google Scholar
34. Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 13, 588-590, 2001.
doi:10.1109/68.924030 Google Scholar
35. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229 Google Scholar
36. Steel, M. J. and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonics crystal fibers," J. Lightw. Technol., Vol. 19, 495-503, 2001.
doi:10.1109/50.920847 Google Scholar
37. Sapulak, M., G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect," Appl. Opt., Vol. 44, 2652-2658, 2005.
doi:10.1364/AO.44.002652 Google Scholar
38. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114 Google Scholar
39. Yue, Y., G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett., Vol. 32, 469-471, 2007.
doi:10.1364/OL.32.000469 Google Scholar
40. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040 Google Scholar
41. Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., Vol. 25, 790-792, 2000.
doi:10.1364/OL.25.000790 Google Scholar
42. Ferrando, A., E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express, Vol. 9, 687-697, 2001.
doi:10.1364/OE.9.000687 Google Scholar
43. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843 Google Scholar
44. Shen, L. P., W. P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightw. Technol., Vol. 21, 1644-1651, 2003.
doi:10.1109/JLT.2003.814397 Google Scholar
45. Gerome, F., J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett., Vol. 29, 2725-2727, 2004.
doi:10.1364/OL.29.002725 Google Scholar
46. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728 Google Scholar
47. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627 Google Scholar
48. Varshney, S. K., T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express, Vol. 14, 3528-3540, 2006.
doi:10.1364/OE.14.003528 Google Scholar
49. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015 Google Scholar
50. Agrawal, A., N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, "Golden spiral photonic crystal fiber: Polarization and dispersion properties," Opt. Lett., Vol. 33, 2716-2718, 2008.
doi:10.1364/OL.33.002716 Google Scholar
51. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706 Google Scholar
52. Ju, J., W. Jin, and M. S. Demokan, "Design of single-polarization single mode photonics crystal fibers," J. Lightw. Technol., Vol. 24, 825-830, 2001. Google Scholar
53. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, 1384-1340, 2003.
doi:10.1109/LPT.2003.818215 Google Scholar
54. Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 16, 182-184, 2004.
doi:10.1109/LPT.2003.819415 Google Scholar
55. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365 Google Scholar
56. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, 393-395, 2003.
doi:10.1364/OL.28.000393 Google Scholar
57. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.
doi:10.1364/OE.11.000818 Google Scholar
58. Folkenberg, J., M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express, Vol. 12, 956-960, 2004.
doi:10.1364/OPEX.12.000956 Google Scholar
59. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Eletron. Lett., Vol. 36, 1452-1253, 2000.
doi:10.1049/el:20000942 Google Scholar
60. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Swithable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, 1626-1628, 2005. Google Scholar
61. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003 Google Scholar
62. Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: Measurement and future opportunities," Opt. Lett., Vol. 24, 1395-1397, 1999.
doi:10.1364/OL.24.001395 Google Scholar
63. Zhu, Z. and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber ," Opt. Express, Vol. 12, 791-796, 2004.
doi:10.1364/OPEX.12.000791 Google Scholar
64. Zhu, Z. and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 21, 249-257, 2004.
doi:10.1364/JOSAB.21.000249 Google Scholar
65. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285 Google Scholar
66. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, 151113-151115, 2007.
doi:10.1063/1.2722058 Google Scholar
67. Ritari, T., J. Tuominen, H. Ludvigsen, J. C. Petersen, T. SΦrensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal bandgap fibers," Opt. Express, Vol. 12, 4080-4087, 2004.
doi:10.1364/OPEX.12.004080 Google Scholar
68. Rindorf, L., J. B. Jensen, M. Dufva, L. H. Pedersen, P. T. HΦiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express, Vol. 14, 8224-8231, 2006.
doi:10.1364/OE.14.008224 Google Scholar
69. Wu, D. K. C., B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett., Vol. 34, 322-324, 2009.
doi:10.1364/OL.34.000322 Google Scholar
70. Qian, W. W., C.-L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei , "High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror," Opt. Lett., Vol. 36, 1548-1550, 2011.
doi:10.1364/OL.36.001548 Google Scholar
71. Chen, D., C. Wu, M.-L. V. Tse, and H. Y. Tam, "Hydrostatic pressure sensor based on mode interference of a few mode fiber," Progress In Electromagnetics Research, Vol. 119, 335-343, 2011.
doi:10.2528/PIER11071001 Google Scholar