1. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Nano-plasmonic biosensors --- A review," International Conference on Complex Medical Engineering, Harbin, 2011. Google Scholar
2. Fleischmanna, M., P. J. Hendraa, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrod," Chemical Physics Letters, Vol. 26, No. 2, 163-166, 1974.
doi:10.1016/0009-2614(74)85388-1 Google Scholar
3. Stuart, D. A., C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. van Duyne, "Glucose sensing using near-infrared surface-enhanced Raman spectroscopy Gold surfaces, 10-day stability, and improved accuracy," Analytical Chemistry, Vol. 77, 4013-4019, 2005.
doi:10.1021/ac0501238 Google Scholar
4. Willets, K. A. and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," The Annual Review of Physical Chemistry, Vol. 58, 267-297, 2007.
doi:10.1146/annurev.physchem.58.032806.104607 Google Scholar
5. Riboh, J. C., A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. van Duyne, "A nanoscale optical biosensor real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion," J. Physical Chemistry B, Vol. 107, 1772-1780, 2003.
doi:10.1021/jp022130v Google Scholar
6. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Physical Review B, Vol. 72, 155412-155426, 2005.
doi:10.1103/PhysRevB.72.155412 Google Scholar
7. Mishchenko, M. I., L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications , Academic Press, 2000.
8. Anker, J. N., W. P. Hall, O. Lyandres, N. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
9. Davis, T. J., K. C. Vernon, and D. E. Gómez, "Designing plasmonic systems using optical coupling between nanoparticles," Physical Review B, Vol. 79, 155423-155432, 2009.
doi:10.1103/PhysRevB.79.155423 Google Scholar
10. Haynes, C. L., A. D. McFarland, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," Analytical Chemistry, 339-346, Sep. 1, 2005. Google Scholar
11. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079 Google Scholar
12. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111) Dependence of water reactivity as a function of Na coverage," J. of Chemical Physics, Vol. 126, 244712, 2007.
doi:10.1063/1.2748385 Google Scholar
13. Slaughter, L., W.-S. Chang, and S. Link, "Characterizing plasmons in nanoparticles and their assemblies with single particle spectroscopy ," J. of Physical Chemistry Letters, Vol. 2, 2015-2023, 2011.
doi:10.1021/jz200702m Google Scholar
14. Angulo, A. M., C. Noguez, and G. C. Schatz, "Electromagnetic field enhancement for wedge-shaped metal nanostructures," J. of Physical Chemistry Letters, Vol. 2, 1978-1983, 2011.
doi:10.1021/jz200825g Google Scholar
15. Schatz, G. C. and R. P. van Duyne, Electromagnetic Mechanism of Surface-enhanced Spectroscopy, John Wiley & Sons Ltd., Chichester, 2002.
16. Whitney, A. V., J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. van Duyne, "Localized surface plasmon resonance nanosensor a high-resolution distance-dependence study using atomic layer deposition," J. Physical Chemistry B, Vol. 109, No. 43, 20522-20528, 2005.
doi:10.1021/jp0540656 Google Scholar
17. Kennedy, B. J., S. Spaeth, M. Dickey, and K. T. Carron, "Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols," J. Physical Chemistry B, Vol. 103, 3640-3646, 1999.
doi:10.1021/jp984454i Google Scholar
18. Stiles, P. L., J. A. Dieringer, N. C. Shah, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," The Annual Review of Analytical Chemistry, Vol. 1, 601-626, 2008.
doi:10.1146/annurev.anchem.1.031207.112814 Google Scholar
19. Wang, D. S. and M. Kerker, "Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids," Physical Review B, Vol. 24, 1777-1790, 1981.
doi:10.1103/PhysRevB.24.1777 Google Scholar
20. Kerker, M., D. S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles," Applied Optics, Vol. 19, No. 19, 3373-3388, 1980.
doi:10.1364/AO.19.003373 Google Scholar
21. Payne, E. K., K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, "Multipole plasmon resonances in gold nanorods," J. Physical Chemistry B, Vol. 110, 2150-2154, 2006.
doi:10.1021/jp056606x Google Scholar
22. Zhang, S., K. Bao, N. J. Halas, H. Xu, and P. Nordlander, "Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed," Nano Letters, Vol. 11, 1657-1663, 2011.
doi:10.1021/nl200135r Google Scholar
23. Link, S. and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Physical Chemistry B, Vol. 103, 8410-8426, 1999.
doi:10.1021/jp9917648 Google Scholar
24. Sekhon, J. S. and S. S. Verma, "Rational selection of nanorod plasmons Material, size, and shape dependence mechanism for optical sensors ," Plasmonics, Jan. 7, 2012. Google Scholar
25. Prangsma, J. C., Local and Dynamic Properties of Light Interacting with Subwavelength Holes, Amsterdam, Twente, 2009.
26. Yang, Z., Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, "FDTD for plasmonics: Applications in enhanced Raman spectroscopy," Chinese Sceince Bulletin, Vol. 55, No. 24, 2635-2642, 2010.
doi:10.1007/s11434-010-4044-0 Google Scholar
27. Dhawan, A., S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, "Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers," Optics Express, Vol. 17, No. 12, 9688-9703, 2009.
doi:10.1364/OE.17.009688 Google Scholar
28. Zeman, E. J. and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium," J. Physical Chemistry, Vol. 91, No. 3, 634-643, 1987.
doi:10.1021/j100287a028 Google Scholar
29. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles The influence of size, shape, and dielectric environment," J. Physical Chemistry B, Vol. 107, 668-677, 2003.
doi:10.1021/jp026731y Google Scholar
30. Zhou, X., M. Zhang, L. Yi, and Y. Fu, "Investigation of resonance modulation of a single rhombic plasmonic nanoparticle," Plasmonics, Vol. 6, 91-98, 2011.
doi:10.1007/s11468-010-9173-4 Google Scholar
31. Dmitriev, A., C. H?gglund, S. Chen, H. Fredriksson, T. Pakizeh, M. K?ll, and D. S. Sutherland, "Enhanced nanoplasmonic optical sensors with reduced substrate effect," Nano Letters, Vol. 8, No. 11, 3893-3898, 2008.
doi:10.1021/nl8023142 Google Scholar
32. Xu, H. and M. K?ll, "Modeling the optical response of nanoparticle-based surface plasmon resonance sensors," Sensors and Actuators B, Vol. 87, 244-249, 2002.
doi:10.1016/S0925-4005(02)00243-5 Google Scholar
33. Brandl, D. W., C. Oubre, and P. Nordlander, "Plasmon hybridization in nanoshell dimers," J. of Chemical Physics, Vol. 123, 024701-024711, 2005.
doi:10.1063/1.1949169 Google Scholar
34. Prodan, E. and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. of Chemical Physics, Vol. 120, No. 11, 5444-5454, 2004.
doi:10.1063/1.1647518 Google Scholar
35. Xu, H. and M. K?ll, "Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates," ChemPhysChem, Vol. 4, No. 9, 1001-1005, 2003.
doi:10.1002/cphc.200200544 Google Scholar
36. Brown, R. J. C., J. Wang, and M. J. T. Milton, "Electromagnetic modelling of Raman enhancement from nanoscale structures as a means to predict the e±cacy of SERS substrates ," J. of Nanomaterials, Vol. 12086, 1-10, 2007.
doi:10.1155/2007/12086 Google Scholar
37. Xu, H., J. Aizpurua, M. K?ll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering ," Physiacal Review E, Vol. 62, No. 3, 4318-4324, 2000.
doi:10.1103/PhysRevE.62.4318 Google Scholar
38. Gunnarsson, L., E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. K?ll, "Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering," Applied Physics Letters, Vol. 78, No. 6, 802-804, 2000.
doi:10.1063/1.1344225 Google Scholar
39. De Garcia, A. F. J. and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Physical Review Letters, Vol. 77, No. 6, 1163-1166, 1996.
doi:10.1103/PhysRevLett.77.1163 Google Scholar
40. Brown, R. J. C., J. Wang, R. Tantra, Y. Re, and M. J. T. Milton, "Electromagnetic modelling of Raman enhancement from nanoscale substrates a route to estimation of the magnitude of the chemical enhancement mechanism in SERS ," Faraday Discussions, Vol. 132, 201-213, 2006.
doi:10.1039/b506751k Google Scholar
41. Schatz, G. C., M. A. Young, and R. P. van Duyne, Electromagnetic Mechanism of SERS, 19-45, Springer-Verlag, Berlin, Heidelberg, 2006.
42. Brandl, D. W., N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Physical Chemistry B, Vol. 110, 12302-12310, 2006.
doi:10.1021/jp0613485 Google Scholar
43. Shegai, T., Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, "Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer," PNAS, Vol. 105, No. 43, 16448-16453, 2008.
doi:10.1073/pnas.0808365105 Google Scholar
44. Baer, R., D. Neuhauser, and S. Weiss, "Enhanced absorption induced by a metallic nanoshell," Nano Letters, Vol. 4, No. 1, 85-88, 2004.
doi:10.1021/nl034902k Google Scholar
45. Wang, H., D. W. Brandl, P. Nordlander, and N. J. Halas, "Plasmonic nanostructures artificial molecules," Accounts of Chemical Research, Vol. 40, No. 1, 53-62, 2007.
doi:10.1021/ar0401045 Google Scholar
46. Brandl, D. W. and P. Nordlander, "Plasmon modes of curvilinear metallic core-shell particles," J. of Chemical Physics, Vol. 126, 144708-144718, 2007.
doi:10.1063/1.2717167 Google Scholar
47. Oubre, C. and P. Nordlander, "Optical properties of metallodi-electric nanostructures calculated using the finite difference time domain method," J. Physical Chemistry B, Vol. 108, 17740-17747, 2004.
doi:10.1021/jp0473164 Google Scholar
48. Radloff, C. and N. J. Halas, "Plasmonic properties of concentric nanoshells," Nano Letters, Vol. 4, No. 7, 1323-1327, 2004.
doi:10.1021/nl049597x Google Scholar
49. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 17, 419-424, 2003.
doi:10.1126/science.1089171 Google Scholar
50. Xu, H., "Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field," Physical Review B, Vol. 72, No. 073405, 1-4, 2005. Google Scholar
51. Le, F., N. Z. Lwin, J. M. Steele, M. Ka, N. J. Halas, and P. Nordlander, "Plasmons in the metallic nanoparticle-film system as a tunable impurity problem," Nano Letters, Vol. 10, No. 5, 2009-2013, 2005.
doi:10.1021/nl0515100 Google Scholar
52. Nordlander, P. and P. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Applied Physics B, Vol. 84, 35-41, 2006.
doi:10.1007/s00340-006-2203-4 Google Scholar
53. Le, F., N. Z. Lwin, N. J. Halas, and P. Nordlander, "Plasmonic interactions between a metallic nanoshell and a thin metallic film," Physical Review B, Vol. 76, No. 165410, 1-12, 2007. Google Scholar
54. Richards, D., R. G. Milner, F. Huang, and F. Festy, "Tip-enhanced Raman microscopy practicalities and limitations," J. of Raman Spectroscopy, Vol. 34, 663-667, 2003.
doi:10.1002/jrs.1046 Google Scholar
55. Hao, F., C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Letters, Vol. 7, No. 3, 729-732, 2007.
doi:10.1021/nl062969c Google Scholar
56. Willingham, B., D. W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Applied Physics B, Vol. 93, 209-216, 2008.
doi:10.1007/s00340-008-3157-5 Google Scholar
57. Voshchinnikov, N. V. and V. G. Farafonov, "Optical properties of spheroidal particles," Astrophysics and Space Science, Vol. 204, No. 1, 19-85, 1993.
doi:10.1007/BF00658095 Google Scholar
58. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and A. F. J. de Garcia, "Optical properties of gold nanorings," Physical Review B, Vol. 90, No. 5, 0574011-0574014, 2003. Google Scholar
59. Mayergoyz, I. D. and Z. Zhang, "Modeling of the electrostatic (plasmon) resonances in metallic and semiconductor nanoparticles," J. of Computational Electronics, Vol. 4, 139-143, 2005.
doi:10.1007/s10825-005-7125-6 Google Scholar
60. Mayergoyz, I. D. and Z. Zhang, "The computation of extinction cross sections of resonant metallic nanoparticles subject to optical radiation," IEEE Trans. on Magnetics, Vol. 43, No. 4, 1681-1684, 2007.
doi:10.1109/TMAG.2007.892500 Google Scholar
61. Vernon, K. C., A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, "Influence of particle-substrate interaction on localized plasmon resonances," Nano Letters, Vol. 10, 2080-2086, 2010.
doi:10.1021/nl100423z Google Scholar
62. Zhang, Z. Y. and Y. P. Zhaoa, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Applied Physics Letters, Vol. 89, 023110-023112, 2006.
doi:10.1063/1.2221403 Google Scholar
63. Hao, E., S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical properties of metal nanoshells," J. Physical Chemistry B, Vol. 108, 1224-1229, 2004.
doi:10.1021/jp036301n Google Scholar
64. Byun, K. M., D. Kimb, and S. J. Kima, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sensors and Actuators B, Vol. 117, 401-407, 2006.
doi:10.1016/j.snb.2005.11.038 Google Scholar
65. Xu, H., E. J. Bjerneld, M. K?ll, and L. B?rjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Physical Review Letters, Vol. 21, No. 83, 4357-4360, 1999.
doi:10.1103/PhysRevLett.83.4357 Google Scholar
66. Zhang, Z. Y. and Y. P. Zhaoa, "Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method," Applied Physics Letters, Vol. 90, 221501-221503, 2007.
doi:10.1063/1.2743938 Google Scholar
67. Dutta, C. M., T. A. Ali, D. W. Brandl, T. H. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. of Chemical Physics, Vol. 129, 084706-084714, 2008.
doi:10.1063/1.2971192 Google Scholar
68. Yang, Z., J. Aizpurua, and H. Xu, "Electromagnetic field enhancement in TERS configurations," Journal of Raman Spectroscopy, Vol. 40, No. 10, 1343-1348, 2009.
doi:10.1002/jrs.2429 Google Scholar