1. Saad, Y., Numerical Methods for Large Eigenvalue Problems, Halstead Press, New York, 1992.
2. Jin, J., "The Finite Element Method in Electromagnetics," John Wiley & Sons, New York, 2002. Google Scholar
3. Lehoucq, R., D. Sorensen, and C. Yang, "ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," 1997, http://www.caam.rice.edu/soft-ware/ARPACK/. Google Scholar
4. Lubkowski, G., B. Bandlow, R. Schuhmann, and T. Weiland, "Effective modeling of double negative metamaterial macrostructures," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1136-1146, May 2009.
doi:10.1109/TMTT.2009.2017349 Google Scholar
5. Weitsch, Y. and T. F. Eibert, "Periodically loaded waveguide analysis by evanescent mode superposition," European Microw. Conf. (EuMC), Rome, Italy, 2009. Google Scholar
6. Glock, H.-W., K. Rothemund, M. Borecky, and U. van Rienen, "Calculation of RF eigenmodes using S-parameters of resonator parts," Proc. EPAC, 1378-1380, Vienna, Austria, 2000. Google Scholar
7. Kamiya, N. and S. T. Wu, "Generalized eigenvalue formulation of the Helmholtz equation by the Trefftz method," Engineering Computations, Vol. 11, 177-186, 1994.
doi:10.1108/02644409410799218 Google Scholar
8. Li, Z.-C., "Error analysis of the Trefftz method for solving Laplace's eigenvalue problems," J. Computational and Applied Mathematics, Vol. 200, 231-254, 2007.
doi:10.1016/j.cam.2005.12.017 Google Scholar
9. Karageorghis, A., "The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation," Applied Mathematics Letters, Vol. 14, 837-842, 2001.
doi:10.1016/S0893-9659(01)00053-2 Google Scholar
10. Fan, C.-M., D.-L. Young, and C.-L. Chiu, "Method of fundamental solutions with external source for the eigenfrequencies of waveguides ," J. Marine Science and Technology, Vol. 17, No. 3, 164-172, 2009. Google Scholar
11. Reutskiy, S., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701 Google Scholar
12. Reutskiy, S. Y., "The method of external excitation for solving generalized Sturm-Liouville problems," J. Computational and Applied Mathematics, Vol. 233, 2374-2386, 2010.
doi:10.1016/j.cam.2009.10.022 Google Scholar
13. Eibert, T. F., Y. Weitsch, and H. Chen, "Dispersion analysis of periodic structures by solving corresponding excitation problems," German Microw. Conf. (GeMiC), Darmstadt, Germany, 2011. Google Scholar
14. Chen, H., C. H. Schmidt, T. F. Eibert, and W. Che, "Dispersion and attenuation analysis of substrate integrated waveguides by driven eigenproblem computation," European Conf. Antennas Propag. (EuCAP), Rome, Italy, 2011. Google Scholar
15. Weitsch, Y., H. Chen, and T. F. Eibert, "Dispersion analysis of periodic structures by solving corresponding excitation problems," Frequenz, Vol. 65, No. 7-8, 247-252, 2011.
doi:10.1515/freq.2011.034 Google Scholar
16. Eibert, T. F., J. L. Volakis, D. R. Wilton, and D. R. Jackson, "Hybrid FE/BI modeling of 3D doubly periodic structures uilizing triangular prismatic elements and a MPIE formulation accelerated by the Ewald transformation," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 843-850, May 1999.
doi:10.1109/8.774139 Google Scholar
17. Eibert, T. F., Y. E. Erdemli, and J. L. Volakis, "Hybrid ¯nite element-fast spectral domain multilayer boundary integral modeling of doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2517-2520, Sept. 2003.
doi:10.1109/TAP.2003.816386 Google Scholar
18. CST Microwave Studio, 2010, http://www.cst.com.
19. Bondeson, A., T. Rylander, and P. Ingelstrom, Computational Electromagnetics, Springer Science, New York, 2005.
20. Davidson, D. B., "Computational Electromagnetics for RF and Microwave Engineering," Cambridge University Press, Cambridge, UK, 2011. Google Scholar
21. Baum, C. E., E. J. Rothwell, K.-M. Chen, and D. P. Nyquist, "The singularity expansion method and its application to target identification ," Proc. IEEE, Vol. 79, No. 10, 1481-1492, 1991.
doi:10.1109/5.104223 Google Scholar
22. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., Wiley Interscience, New York, USA, 2009.
23. Tamir, T. and A. A. Oliner, "Guided complex waves. Part 1: Fields at an interface," Proc. IEE, Vol. 110, No. 2, 310-324, Feb. 1963. Google Scholar
24. Eshra, I. and A. Kishk, "Analysis of left-handed rectangular waveguides with dielectric-filled corrugations using the asymptotic corrugation boundary ," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 3, 221-225, Jun. 2006.
doi:10.1049/ip-map:20050095 Google Scholar
25. Hsu, C., R. Harrington, J. Mautz, and T. Sarkar, "On the location of leaky wave poles for a grounded dielectric slab," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 2, 346-349, Feb. 1991.
doi:10.1109/22.102980 Google Scholar
26. Weitsch, Y. and T. F. Eibert, "Composite right-/left-handed interdigital leaky-wave antenna on a substrate integrated waveguide," European Conf. Antennas Propag. (EuCAP), Barcelona, Spain, 2010. Google Scholar
27. Weitsch, Y. and T. F. Eibert, "Eigenvalue computation of open periodically composed waveguides by series expansion," IEEE Antennas Propag. Soc. Int. Symp., Spokane, WA, Jul. 2011. Google Scholar