1. Kozakoff, D. J., Analysis of Radome Enclosed Antennas, Artech House, Norwood, MA, 1997.
2. Persson, K., M. Gustafsson, and G. Kristensson, "Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation," Progress In Electromagnetics Research B, Vol. 20, 65-90, 2010.
doi:10.2528/PIERB10012109 Google Scholar
3. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404 Google Scholar
4. Meng, H. F. and W.-B. Dou, "Fast analysis of electrically large radome in millimeter wave band with fast multipole acceleration," Progress In Electromagnetics Research, Vol. 120, 371-385, 2011. Google Scholar
5. Xiao, K., S. L. Chai, and L.-W. Li, "Comparisons of coupled VSIE and non-coupled VSIE formulations," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1341-1351, 2011. Google Scholar
6. Amin, A. M. and R. L. Sierakowski, "Effect of thermomechanical coupling on the response of elastic solids," AIAA Journal, Vol. 28, No. 7, 1319-1322, 1990.
doi:10.2514/3.25215 Google Scholar
7. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005 Google Scholar
8. Karim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal Koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.
doi:10.2528/PIER09110512 Google Scholar
9. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011. Google Scholar
10. Hong, T., M.-Z. Song, and Y. Liu, "RF directional modulation technique using a switched antenna array for communication and direction-finding applications," Progress In Electromagnetics Research, Vol. 120, 195-213, 2011. Google Scholar
11. Zhu, F., S.-C. Gao, A. T. S. Ho, T. W. C. Brown, J. Li, and J.-D. Xu, "Low-profile directional ultra-wideband antenna for see-through-wall imaging applications," Progress In Electromagnetics Research, Vol. 121, 121-139, 2011.
doi:10.2528/PIER11080907 Google Scholar
12. Koetje, E. L., F. H. Simpson, and J. F. Schorsch, Broadband and high temperature radome apparatus, US Pat., 4677443, Jun. 30, 1987.
13. Mackenzie, S. B., Radome wall design having broadband and mm-wave characteristics, US Pat., 5408244, Apr. 18, 1995.
14. Mackenzie, S. B. and D. W. Stressing, W-band and X-band radome wall, US Pat., 6028565, Feb. 22, 2000.
15. Niino, M. and S. Maeda, "Recent development status of functionally gradient materials," ISIJ International, Vol. 30, No. 9, 699-703, 1990.
doi:10.2355/isijinternational.30.699 Google Scholar
16. Javaheri, R. and M. R. Eslami, "Thermal buckling of functionally graded plates," AIAA Journal, Vol. 40, No. 1, 162-169, 2002.
doi:10.2514/2.1626 Google Scholar
17. Vel, S. S. and R. C. Batra, "Exact solution for thermoelastic deformations of functionally graded thick rectangular plates," AIAA Journal, Vol. 40, No. 7, 1421-1433, 2002.
doi:10.2514/2.1805 Google Scholar
18. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, Inc., New York, 1986, Royal Society, London, 1904.
19. Garnett, J. C. M., "Colors in metal glasses and in metallic films," Philosophical Transactions of the Royal Society of London, Series A, Mathematical, Physical & Engineering Sciences, Vol. 203, No. 359-371. Google Scholar
20. Huang, X., F. Peng, F. Yan, and H. Tang, "Research on the dielectric properties of composite made with Si3N4-SiO2," Journal of Wuhan University of Technology, Vol. 28, No. 12, 21-23, 2006. Google Scholar
21. Zhou, Y., Science of Ceramic Material, Harbin Institute of Technology Press, Harbin, China, 1995.
22. Kuriyama, M., Y. Inomata, T. Kujima, and Y. Hasegawa, "Thermal conductivity of hot-pressed Si3N4 by the laser flash method," American Ceramic Society Bulletin, Vol. 57, No. 12, 1119-1122, 1978. Google Scholar
23. Miao, X., X. Zhang, B. Wan, J. Han, and S. Du, "Research on thermoelastic problems computation methods of FGM," Journal of Functional Materials, Vol. 30, No. 2, 122-125, 1999. Google Scholar
24. Kingery, W. D., H. H. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., Wiley, New York, 1976.
25. Kondo, R., Porous Materials, Gihodo, Tokyo, Japan, 1973.
26. Coble, R. L. and W. D. Kingery, "Effect of porosity on physical properties of sintered alumina," Journal of the American Ceramic Society, Vol. 39, No. 11, 377-385, 1956.
doi:10.1111/j.1151-2916.1956.tb15608.x Google Scholar
27. Huseby, I. C., G. A. Slack, and R. H. Arendt, "Thermal expansion of CdAl2O4, β-Si3N4 and other phenacite-type compounds," Bulletin of the American Ceramic Society, Vol. 60, No. 9, 919-920, 1981. Google Scholar
28. Bruls, R. J., H. T. Hintzen, G. de With, and R. Metselaar, "The temperature dependence of the Young's modulus of MgSiN2, AlN and Si3N4," Journal of the European Ceramic Society, Vol. 21, No. 3, 263-268, 2001.
doi:10.1016/S0955-2219(00)00210-7 2, AlN and Si3N4&publisher=Journal of the European Ceramic Society&volume=21&issue=3&year=2001&doi=10.1016/S0955-2219(00)00210-7' target='_blank'> Google Scholar
29. Tomeno, I. and High temperature elastic moduli of Si3N4 ceramics, Japanese Journal of Applied Physics, Vol. 20, No. 9, 1751-1752, 1981.
doi:10.1143/JJAP.20.1751 Google Scholar
30. Shao, Y., D. Jia, and Y. Zhou, "Effect of porosity on mechanical and dielectric properties of 20% BN/Si3N4 composite porous ceramics ," Rare Metal Materials and Engineering, Vol. 38, No. 2, 479-482, 2009. Google Scholar
31. Liu, H., Mechanics of Materials, Higher Education Press, Beijing, China, 2007.