1. Al-Hasan, M. J., T. A. Denidni, and A. Sebak, "A new UC-EBG based-dielectric resonator antenna for millimeter-wave applications ," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1274-1276, 2011.
doi:10.1109/APS.2011.5996520 Google Scholar
2. Elsheakh, D. N., H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. Elhenawy, "Ultrawide bandwidth umbrella-shaped microstrip monopole antenna using spiral artificial magnetic conductor (SAMC)," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1255-1258, 2009.
doi:10.1109/LAWP.2009.2036571 Google Scholar
3. Qiang, W. Y. and F. Tao, "The study on a patch antenna with PBG structure," Third International Symposium onIntelligent Information Technology Application (IITA 2009), Vol. 3, 565-567, 2009. Google Scholar
4. Chang, K., Microwave Ring Circuit and Antennas, John Wiley, New York, 1996.
5. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
6. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters, Vol. 84, No. 15, Apr. 12, 2004. Google Scholar
7. Wu, B., B. Li, T. Su, and C.-H. Liang, "Study on transmission characteristic of split ring resonator defect ground structure," PIERS Online, Vol. 2, No. 6, 710-714, 2006.
doi:10.2529/PIERS060903034927 Google Scholar
8. Garcia-Garcia, J., F. Aznar, M. Gil, J. Bonache, and F. Martin, "Size reduction of SRRs for metamaterial and left handes media design," PIERS Online, Vol. 3, No. 3, 266-269, 2007.
doi:10.2529/PIERS060727140931 Google Scholar
9. Niu, J.-X., X.-L. Zhou, and L.-S. Wu, "Analysis and application of a novel structures based on split ring resonators and coupled lines," Progress In Electromagnetics Research, Vol. 75, 153-162, 2007.
doi:10.2528/PIER07060101 Google Scholar
10. Niu, J.-X. and X.-L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802 Google Scholar
11. Nornikman, H., F. Malek, P. J. Soh, and A. A. H. Azremi, "Design a rice husk pyramidal microwave absorber with split ring resonator," The Asia-Pacific Symposium on Applied Electromagnetics and Mechanics 2010 (APSAEM 2010), 2010. Google Scholar
12. Rahim, M. K. A., H. A. Majid, and T. Masri, "Microstrip antenna incorporated with left-handed metamaterial at 2.7 GHz," IEEE International Workshop on Antenna Technology (iWAT 2009), 1-4, 2009.
doi:10.1109/IWAT.2009.4906918 Google Scholar
13. Ezanuddin, A. A. M., F. Malek, and P. J. Soh, "Investigation of complementary split ring ring resonator with dielectric ring," Loughborough Antennas and Propagation Conference (LAPC), 297-300, 2010.
doi:10.1109/LAPC.2010.5665999 Google Scholar
14. Yuandan, D. and T. Itoh, "Miniaturized patch antennas loaded with complementary split-ring resonators and reactive impedance surface," 5th European Conference on Antennas and Propagation (EUCAP), 2415-2418, 2011. Google Scholar
15. Quevedo-Teruel, O., M. N. M. Kehn, and E. Rajo-Iglesias, "Dual-band patch antennas based on short-circuited split ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 2758-2765, 2011.
doi:10.1109/TAP.2011.2158786 Google Scholar
16. Jiun-Peng, C. and H. Powen, "A miniaturized slot dipole antenna capacitively fed by a CPW With split ring resonators," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 779-781, 2011.
doi:10.1109/APS.2011.5996388 Google Scholar
17. Lin, H.-H., C.-Y. Wu, and S.-H. Yeh, "Metamaterial enhanced high gain antenna for WiMAX application," 2007 IEEE Region 10 Conference (TENCON 2007), 1-3, 2007.
doi:10.1109/TENCON.2007.4428962 Google Scholar
18. Majid, H. A., M. Rahim, and T. Masri, "Left handed metamaterial design for microstrip antenna application," IEEE International RF and Microwave Conference (RFM 2008), 218-221, 2008.
doi:10.1109/RFM.2008.4897426 Google Scholar
19. Lai, X., Q. Li, P.-Y. Qin, B. Wu, and C.-H. Liang, "A novel wideband bandpass filter based on complementary split-ring resonator," Progress In Electromagnetics Research C, Vol. 1, 177-184, 2008.
doi:10.2528/PIERC08013104 Google Scholar
20. Bilotti, F. and L. Vegni, Design of Metamaterial-Based Resonant Microwave Absorbers with Reduced Thicness and Absence of Metallic Backing, Springer Sciences | Business Media B. V., 2009.
21. Rahim, M. K. A., H. A. Majid, and T. Masri, "Microstrip antenna incorporated with left-handed metamaterial at 2.7 GHz," IEEE International Workshop on Antenna Technology (iWAT 2009), 1-4, 2009.
doi:10.1109/IWAT.2009.4906918 Google Scholar
22. Feresidis, A. and J. C. Vardaxoglou, "Flat plate millimetre wave antenna based on partially reflective FSS," International Conference on Antennas and Propagation, Vol. 1, 33-36, 2001.
doi:10.1049/cp:20010232 Google Scholar
23. Liu, S.-H., C.-H. Liang, W.-Ding, L.-Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slan waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905 Google Scholar
24. Hwang, R.-B., H.-W. Liu, and C. Y. Chin, "A matematrial based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606 Google Scholar
25. Veselago, V. G., "The Electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics USPEKI, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
26. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
27. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
28. Saib, A., L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.-M. Thomassin, C. Pagnoulle, C. Detrembleur, and R. Jerome, "Carbon nanotube composites for broadband microwave absorbing materials," 2005 European Microwave Conference, Vol. 1, 2005. Google Scholar
29. Kotsuka, Y. and H. Yamazaki, "Fundamental investigation on a weakly magnetized ferrite absorber," IEEE Transaction on Electromagnetic Compatibility, Vol. 42, No. 2, 116-124, 2000.
doi:10.1109/15.852405 Google Scholar
30. Nedkov, I., L. Milenova, and N. Dishovsky, "Microwave polymer-ferroxide film absorbers," IEEE Transactions on Magnetics, Vol. 30, No. 6, 4545-4547, 1994.
doi:10.1109/20.334143 Google Scholar
31. Nornikman, H., F. B. A. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003 Google Scholar
32. Nornikman, H., F. Malek, M. Ahmed, F. H. Wee, P. J. Soh, A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.
doi:10.2528/PIER10101203 Google Scholar
33. Malek, M., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abd Aziz, A. R. Othman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-447, 2011. Google Scholar
34. Ezanuddin, A. A. M., F. Malek, and P. J. Soh, "Investigation of complementary split ring resonators with dielectric ring," 2010 Loughborough Antennas and Propagation Conference (LAPC), 297-300, 2010.
doi:10.1109/LAPC.2010.5665999 Google Scholar
35. Majid, H. A., M. Rahim, and T. Masri, "Left handed metamaterial design for microstrip antenna application," IEEE International RF and Microwave Conference (RFM 2008), 218-221, 2008.
doi:10.1109/RFM.2008.4897426 Google Scholar
36. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
37. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
38. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetics and electric resonators ," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003 Google Scholar
39. Das, S., A. Kundu, S. Maity, S. Dhar, and B. Gupta, "Novel compact CPW filter for MICs using metamaterial structures," 2011 11th Mediterranean Microwave Symposium (MMS), 286-289, 2011.
doi:10.1109/MMS.2011.6068582 Google Scholar
40. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The Design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, Part 1, 8-17, 2005. Google Scholar
41. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
42. Smith, D. R., W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Negative permeability from split ring resonator arrays ," 2000 Conference on Lasers and Electro-Optics Europe, 2000. Google Scholar
43. Nornikman, H., F. Malek, P. J. Soh, and A. A. H. Azremi, "Design a rice husk pyramidal microwave absorber with split ring resonator ," The Asia-Pacific Symposium on Applied Electromagnetics and Mechanics 2010 (APSAEM 2010), 2010. Google Scholar
44. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Performance simulation of pyramidal and wedge microwave absorbers," 3rd Asian Modelling Symposium (AMS 2009), 649-654, 2009. Google Scholar
45. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Modelling simulation stage of pyramidal and wedge absorber microwave absorber design," 4th International Conference on Electromagnetic Near Field Characterization and Imaging (ICONIC'09), 2009. Google Scholar
46. Nornikman, H., P. J. Soh, A. A. H. Azremi, F. H. Wee, and F. M. Malek, "Investigation of an agricultural waste as an alternative material for microwave absorber," PIERS Online, Vol. 5, No. 6, 506-510, 2009. Google Scholar
47. Nornikman, H., Malek, F., P. J. Soh, and A. A. H. Azremi, "E®ect on source signal condition for pyramidal microwave absorber performance ," International Conference on Computer & Communication Engineering (ICCCE 2010), 289-293, 2010. Google Scholar