Vol. 128
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-01
Design of Low-Loss and Highly-Selective CMOS Active Bandpass Filter at k -Band
By
Progress In Electromagnetics Research, Vol. 128, 331-346, 2012
Abstract
In this paper, a second-order Chebyshev active bandpass filter (BPF) with three finite transmission zeros is presented. The filter utilizes a tapped-inductor feedback technique to compensate resistive losses of on-chip inductors, and a shunt-feedback inductor between input and output ports to achieve the transmission zeros. Moreover, one transmission zero is in the lower stopband, and two transmission zeros are in the upper stopband, thus improving the selectivity of the filter significantly. The filter is designed and fabricated in a standard 0.18-μm CMOS technology with a chip area of 0.57 mm×0.65 mm including all testing pads. The circuit draws 6 mA from a 0.7-V supply voltage. Additionally, the filter achieves a 1.65-dB insertion loss and 13.2-dB return loss with a 17% 3-dB bandwidth at 23.5 GHz. The measured NF and input P1 dB is 6.7 dB and -3.5 dBm. The rejection levels at the transmission zeros are greater than 15.2 dB. Finally, the large-signal characterizations are also investigated by the 1-dB compression point (P1 dB) of the filter.
Citation
Sen Wang Bo-Zong Huang , "Design of Low-Loss and Highly-Selective CMOS Active Bandpass Filter at k -Band," Progress In Electromagnetics Research, Vol. 128, 331-346, 2012.
doi:10.2528/PIER12031301
http://www.jpier.org/PIER/pier.php?paper=12031301
References

1. Lerdsitsomboon, W. and K. O. Kenneth, "Technique for integration of a wireless switch in a 2.4 GHz single chip radio," IEEE J. Solid-State Circuits, Vol. 46, No. 2, 368-377, Feb.2011.
doi:10.1109/JSSC.2010.2090089

2. Lee, J., Y.-A. Li, M.-H. Hung, and S.-J. Huang, "A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology," IEEE J. Solid-State Circuits, Vol. 46, No. 12, 2746-2756, Dec.2010.
doi:10.1109/JSSC.2010.2075250

3. Kwon, I., Y. Eo, H. Bang, K. Choi, S. Jeon, S. Jung, D. Lee, and H. Lee, "A single-chip CMOS transceiver for UHF mobile RFID reader," IEEE J. Solid-State Circuits, Vol. 43, No. 3, 729-738, Mar.2008.
doi:10.1109/JSSC.2007.914302

4. Wong, S.-K., F. KungWai Lee, S. Maisurah, and M. N. B. Osman, "A wimedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

5. Shi, X., K. S. Yeo, W. M. Lim, M. A. Do, and C. C. Boon, "A spice compatible model of on-wafer coupled interconnects for CMOS RFICs," Progress In Electromagnetics Research, Vol. 102, 287-299, 2010.
doi:10.2528/PIER10010608

6. Cao, Y., R. A. Groves, X. Huang, N. D. Zamdmer, J.-O. Plouchart, R. A. Wachnik, T.-J. King, and C. Hu, "Frequency-independent equivalent-circuit model for on-chip spiral inductors," IEEE J. Solid-State Circuits, Vol. 38, No. 3, 419-426, Mar.2003.
doi:10.1109/JSSC.2002.808285

7. Long, J. R. and M. A. Copeland, "The modeling, characterization,and design of monolithic inductors for silicon RF IC's," IEEE J.Solid-State Circuits, Vol. 32, No. 3, 357-369, Mar.1997.
doi:10.1109/4.557634

8. Wang, S., K.-H. Tsai, K.-K. Huang, S.-X. Li, H.-S. Wu, and C.-K. C. Tzuang, "Design of X-band RF CMOS transceiver for FMCW monopulse radar," IEEE Trans. on Microw. Theory and Tech, Vol. 57, No. 1, 61-70, Jan.2009.
doi:10.1109/TMTT.2008.2008942

9. He, X. and W. B. Kuhn, "A 2.5-GHz low-power, high dynamic range self-tuned Q-enhanced LC filter in SOI," IEEE J. SolidState Circuits, Vol. 40, No. 8, 1618-1628, Aug.2005.
doi:10.1109/JSSC.2005.852043

10. Park, E.-C., Y.-S. Choi, J.-B. Yoon, S. Hong, and E. Yoon, "Fully integrated low phase-noise VCOs with on-chip MEMS inductors," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 1, 289-296, Jan.2006.
doi:10.1109/TMTT.2002.806510

11. Hsieh, H.-H., Y.-T. Liao, and L.-H. Lu, "A compact quadrature hybrid MMIC using CMOS active inductors," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 6, 1098-1104, Jun.2007.
doi:10.1109/TMTT.2007.896815

12. Ler, C. L., A. K. B. A'ain, and A. V. Kordesh, "CMOS source degenerated differential active inductor," IET Electron. Lett., Vol. 44, No. 3, 196-197, Jan.2008.
doi:10.1049/el:20082939

13. Zheng, Y. and C. E. Saavedra, "Frequency response comparison of two common active inductors," Progress In Electromagnetics Research Letters, Vol. 13, 113-119, 2010.

14. Georgescu, B., I. G. Finvers, and F. Ghannouchi, "2 GHz Q-enhanced active filter with low passband distortion and high dynamic range," IEEE J. Solid-State Circuits, Vol. 41, No. 9, 2029-2039, Sept.2006.
doi:10.1109/JSSC.2006.880618

15. Soorapanth, T. and S. S. Wong, "A 0-dB IL 2140 ± 30MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS," IEEE J. Solid-State Circuits, Vol. 37, No. 5, 579-586, May 2002.
doi:10.1109/4.997850

16. Kulyk, J. and J. Haslett, "A monolithic CMOS 2368 ± 30MHz bandpass filter," IEEE J. Solid-State Circuits, Vol. 41, No. 2, 362-374, Feb.2006.
doi:10.1109/JSSC.2005.862348

17. Fan, K.-W., C.-C. Weng, Z.-M. Tsai, H. Wang, and S.-K. Jeng, "K-band MMIC active band-pass filters," IEEE Microw. and Wireless Compon. Lett., Vol. 15, No. 1, 19-21, Jan.2005.
doi:10.1109/LMWC.2004.840961

18. Chiang, M.-J, H-S. Wu, and C.-K. C. Tzuang, "A 3.7-mW Zero-dB fully integrated active bandpass filter at Ka-band in 0.18μm CMOS," IEEE MTT-S Int. Microw. Symp. Dig., 1043-1046, Atlanta, GA, Jun. 2008.

19. Huang, K.-K., M.-J. Chiang, and C.-K. C. Tzuang, "A 3.3mW K-band 0.18μm 1P6M CMOS active bandpass filter using complementary current-reuse pair ," IEEE Microw. and Wireless Compon. Lett., Vol. 18, No. 2, 94-96, Feb.2008.
doi:10.1109/LMWC.2007.915035

20. Wang, S. and R.-X. Wang, "A tunable bandpass filter using Q-enhanced and semi-passive inductors at S-band in 0.18μm CMOS," Progress In Electromagnetics Research B, Vol. 28, 55-73, 2010.

21. Wang, S. and R.-X. Wang, "Q-enhanced CMOS inductor using tapped-inductor feedback," IET Electron. Lett., Vol. 47, No. 16, 921-922, Aug.2011.
doi:10.1049/el.2011.1165

22. Tang, C.-W., C.-W. Shen, and P.-J. Hsieh, "Design of lowtemperature co-fired ceramic bandpass filters with modified coupled inductors," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 1, 172-179, Jan.2009.
doi:10.1109/TMTT.2008.2009034

23. Tang, C.-W., "Design of four-ordered cross-coupled bandpass filters with low-temperature co-fired ceramic technology," IET Microw. Antennas & Propag., Vol. 3, 402-409, 2009.
doi:10.1049/iet-map.2008.0118

24. Yeung, L. K. and K.-L. Wu, "A compact second-order LTCC bandpass filter with finite transmission zeros," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 2, 337-341, Feb.2003.
doi:10.1109/TMTT.2002.807846

25. Huang, P.-L., J.-F. Chang, Y.-S. Lin, and S.-S. Lu, "Microma-chined V -band CMOS bandpass filter with 2 dB insertion loss," IET Electron. Lett., Vol. 45, No. 2, 100-101, Jan.2009.
doi:10.1049/el:20092862

26. Yang, C.-L., S.-Y. Shu, and Y.-C. Chiang, "Analysis and design of a chip filter with low insertion loss and two adjustable transmission zeros using 0.18μm CMOS technology," IEEE Trans. on Microw.Theory and Tech., Vol. 58, No. 1, 176-184, Jan.2010.
doi:10.1109/TMTT.2009.2035871

27. Yang, C.-L., S.-Y. Shu, and Y.-C. Chiang, "Design of K-band chip filter with three tunable transmission zeros using a standard 0.13μm CMOS technology," IEEE Trans. on Circuit and Systems-II, Vol. 57, No. 7, 522-526, Jul.2010.
doi:10.1109/TCSII.2010.2048395

28. Zhou, L., S. Liu, Y.-N. Guo, X.-K. Kong, and H. F. Zhang, "A high selectivity quadruple-mode BPF with two short-circuited stub-loaded sirs," Progress In Electromagnetics Research Letters, Vol. 24, 43-50, 2011.

29. Wang, S. and B.-Z. Wang, "Design of CMOS active bandpass filter with three transmission zeros," IET Electron. Lett., Vol. 47, No. 20, 1130-1131, Sept.2011.
doi:10.1049/el.2011.2340

30. Georgescu, B., H. Pekau,J. Haslett, and J. McRory, "Tunable coupled inductor Q-enhancement for parallel resonant LC tanks," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 10, 705-713, Apr. 2003.

31. Chun, Y.-H., J.-R. Lee, S.-W. Yun, and J.-K. Rhee, "Design of an RF low-noise bandpass filter using active capacitance circuit," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 2, 687-695, Feb. 2005.
doi:10.1109/TMTT.2004.840565

32. Cheng, K.-K. M. and H.-Y. Chan, "Noise performance of negative-resistance compensated microwave bandpass filter -- Theory and experiments," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 5, 924-927, May 2005.
doi:10.1109/22.920150