1. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467 Google Scholar
2. Tretyakov, S., A. Sihvola, and L. JylhÄa, "Backward-wave regime and negative refraction in chiral composites," Photonics and Nanostructures, Vol. 3, No. 2-3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008 Google Scholar
3. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediums," Microwave Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005.
doi:10.1002/mop.20742 Google Scholar
4. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny,C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407,2009. Google Scholar
5. Zhang, S., Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev.Lett., Vol. 102, 023901,2009. Google Scholar
6. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys.Rev. B, Vol. 79, 121104(R),2009. Google Scholar
7. Wiltshire, M. C. K., J. B. Pendry, and J. V. Hajnal, "Chiral swiss rolls show a negative refractive index," J. Phys.: Condens. Matter, Vol. 21, No. 29, 292201,2009. Google Scholar
8. Dong, J., J. Zhou, T. Koschny, and C. M. Soukoulis, "Bi-layer cross chiral structure with strong optical activity and negative refractive index," Optics Express, Vol. 17, No. 16, 14172-14179, 2009.
doi:10.1364/OE.17.014172 Google Scholar
9. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of Lshaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011. Google Scholar
10. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173 Google Scholar
11. Zarifi, D., M. Soleimani, and V. Nayyeri, "A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 251-263, 2012. Google Scholar
12. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev.Lett., Vol. 95, 123904,2005. Google Scholar
13. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Optics Express, Vol. 13, No. 13, 4974-4979, 2005.
doi:10.1364/OPEX.13.004974 Google Scholar
14. Qiu, C.-W., N. Burokur, S. Zouhdi, and L.-W. Li, "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. Am. A, Vol. 25, No. 1, 55-63, 2008.
doi:10.1364/JOSAA.25.000055 Google Scholar
15. Dong, W., L. Gao, and C. W. Qiu, "Goos-HÄanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002 Google Scholar
16. Cheng, X. X., H. S. Chen, B.-I. Wu, and J. A. Kong, "Visualization of negative refraction in chiral nihility media.," IEEE Antennas & Propagation Magazine, Vol. 51, No. 4, 79-87, 2009.
doi:10.1109/MAP.2009.5338687 Google Scholar
17. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics:Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706 Google Scholar
18. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a chiral-coated nihility cylinder," Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010.
doi:10.2528/PIERL10072807 Google Scholar
19. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1991-1999, 2010. Google Scholar
20. Huang, Y. Y., W. T. Dong, L. Gao, and D. W. Qiu, "Large positive and negative lateral shifts near pseudo-brewster dip on rflection from a chiral metamaterial slab," Optics Express, Vol. 19, No. 2, 1310-1323, 2011.
doi:10.1364/OE.19.001310 Google Scholar
21. Qamar, S. R., A. Naqvi, A. A. Syed, and Q. A. Naqvi, "Radiation characteristics of elementary sources located in unbounded chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 713-722, 2011.
doi:10.1163/156939311794827294 Google Scholar
22. Ahmad, F., S. N. Ali, A. A. Syed, and Q. A. Naqvi, "Chiral and/or chiral nihility interfaces: Parametric dependence, power tunneling and rejection," Progress In Electromagnetics Research M, Vol. 23, 167-180, 2012.
doi:10.2528/PIERM11120104 Google Scholar
23. Jin, Y., J. He, and S. He, "Surface polaritons and slow propagation related to chiral media supporting backward waves," Phys. Lett.A, Vol. 351, No. 4-5, 354-358, 2006.
doi:10.1016/j.physleta.2005.11.010 Google Scholar
24. Dong, J. F., "Surface wave modes in chiral negative refraction grounded slab waveguides," Progress In Electromagnetics Research, Vol. 95, 153-166, 2009.
doi:10.2528/PIER09062604 Google Scholar
25. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility metamaterial waveguides," Progress In Electromagnetics Research B, No. 14, 107-126, 2009.
doi:10.2528/PIERB09012201 Google Scholar
26. Dong, J., "Exotic characteristics of power propagation in the chiral nihility fiber," Progress In Electromagnetics Research, Vol. 99, 163-178, 2009.
doi:10.2528/PIER09102801 Google Scholar
27. Dong, J., J. Li, and F.-Q. Yang, "Guided modes in the fourlayer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011. Google Scholar
28. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011. Google Scholar
29. Ye, Y. and S. He, "90o polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, No. 20, 203501,2010.
doi:10.1063/1.3429683 Google Scholar
30. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605 Google Scholar
31. Cheng, X. X., H. S. Chen, X. M. Zhang, B. L. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research,, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002 Google Scholar
32. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506 Google Scholar
33. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Ch. 8,Artech House, Boston, London, 1994.
34. Bayatpur, F., A. V. Amirkhizi, and S. Nemat-Nasser, "Experimental characterization of chiral uniaxial bianisotropic composites at microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 4, 1126-1135, 2012.
doi:10.1109/TMTT.2012.2184386 Google Scholar
35. Cheng, Q. and T. J. Cui, "Negative refractions in uniaxially anisotropic chiral media," Phys. Rev. B, Vol. 73, 113104,2006. Google Scholar
36. Cheng, Q. and T. J. Cui, "Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media," J. Opt. Soc. Am. A, Vol. 23, No. 12, 3203-3207, 2006.
doi:10.1364/JOSAA.23.003203 Google Scholar
37. Dong, J. F. and J. Li, "Characteristics of guided modes in uniaxial chiral circular waveguides," Progress In Electromagnetics Research, Vol. 124, 331-345, 2012.
doi:10.2528/PIER11112312 Google Scholar
38. Silverman, M. P., "Rflection and refraction at the surface of a chiral medium: Comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation," J. Opt.Soc. Am. A, Vol. 3, No. 6, 830-837, 1986.
doi:10.1364/JOSAA.3.000830 Google Scholar
39. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Am. A, Vol. 5, No. 9, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450 Google Scholar
40. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab: Errata," J. Opt. Soc. Am. A, Vol. 7, No. 11, 2154-2155, 1990.
doi:10.1364/JOSAA.7.002154 Google Scholar
41. Cory, H. and I. Rosenhouse, "The rflection and transmission of electromagnetic waves by a chiral slab," J. Mod. Opt., Vol. 39, No. 6, 1321-1330, 1992.
doi:10.1080/713823543 Google Scholar
42. Bahar, E., "Mueller matrices for waves reflected and transmitted through chiral materials: Waveguide modal solutions and applications," J. Opt. Soc. Am. B, Vol. 24, No. 7, 1610-1619, 2007.
doi:10.1364/JOSAB.24.001610 Google Scholar
43. Menzel, C., C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl.Phys. Lett., Vol. 93, No. 23, 233106,2008. Google Scholar
44. Semchenko, I. V., S. A. Khakhomov, S. A.Tretyakov,A. H. Sihvola, and E. A. Fedosenko, "Rflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves," J. Phys. D: Appl. Phys., Vol. 31, No. 19, 2458-2464, 1998.
doi:10.1088/0022-3727/31/19/016 Google Scholar
45. Uckun, S., "Plane wave propagation through a uniaxial chiral slab and transmission coefficient," Microwave Opt. Tech. Lett., Vol. 18, No. 3, 171-174, 1998.
doi:10.1002/(SICI)1098-2760(19980620)18:3<171::AID-MOP4>3.0.CO;2-C Google Scholar
46. Viitanen, A. J. and I. V. Lindell, "Uniaxial chiral quarter-wave polarisation transformer," Electron. Lett., Vol. 29, No. 12, 1074-1075, 1993.
doi:10.1049/el:19930717 Google Scholar