Vol. 129
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-28
A Wideband CMOS Current-Mode Down-Conversion Mixer for Multi-Standard Receivers
By
Progress In Electromagnetics Research, Vol. 129, 421-437, 2012
Abstract
This paper presents a low voltage wideband down-conversion mixer using current-mode approach for multi-standard receivers. The proposed mixer uses a current mirror amplifier with an embedded passive switching core to achieve mixing function, which can combine the advantages of active and passive mixers simultaneously. The mixer is implemented using a 0.18 μm CMOS technology and covers frequency band from 0.5 GHz to 4.0 GHz. A comparison with conventional CMOS down-conversion mixer shows that this current-mode mixer has advantages of large conversion gain, low noise figure and high linearity. Over the entire bandwidth, the mixer features a conversion gain of 8.0~8.7 dB, a double-sideband (DSB) noise figure of 6.7~9.1 dB and an input third-order intercept point (IIP3) of 1.5~5.2 dBm, while consuming 8 mA from a 1.2 V supply voltage. The mixer occupies the active area of 0.43×0.46 mm2 including testing pads.
Citation
Qiuzhen Wan, and Chunhua Wang, "A Wideband CMOS Current-Mode Down-Conversion Mixer for Multi-Standard Receivers," Progress In Electromagnetics Research, Vol. 129, 421-437, 2012.
doi:10.2528/PIER12032001
References

1. Brandolini, M., P. Rossi, D. Manstretta, and F. Svelto, "Toward multistandard mobile terminals-fully integrated receivers require-multistandard mobile terminals-fully integrated receivers require-ments and architectures," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 3, 1026-1038, 2005.
doi:10.1109/TMTT.2005.843505        Google Scholar

2. Chen, X.-Q., X.-W. Shi, Y.-C. Guo, and M.-X. Xiao, "A novel dual band transmitter using microstrip defected ground structure," Progress In Electromagnetics Research, Vol. 83, 1-11, 2008.
doi:10.2528/PIER08041503        Google Scholar

3. Kim, C.-Y. and D.-O. Kim, "Prediction of the interference level from a low-power radio device provoking the intermodulation interference to the AMPS receiver," Progress In Electromagnetics Research, Vol. 94, 69-81, 2009.
doi:10.2528/PIER09050401        Google Scholar

4. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808        Google Scholar

5. Wong, S.-K., F. KungWai Lee, S. Maisurah, and M. N. B. Osman, "A wimedia compliant CMOS RF power amplifier for ultra-," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.        Google Scholar

6. Razalli, M. S., M. A. Mahdi, A. Ismail, S. M. Shafie, and H. Adam, "Design and development of wireless communication transceiver to support RFID reader at UHF band," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2063-2075, 2010.        Google Scholar

7. Chen, A.-X., T.-H. Jiang, Z. D. Chen, and D. Su, "A novel low-profile wideband UHF antenna," Progress In Electromagnetics Research, Vol. 121, 75-88, 2011.
doi:10.2528/PIER11081302        Google Scholar

8. Chen, W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010        Google Scholar

9. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub, and T. A. Denidni, "Ultra wideband CPW-FED aperture antenna with WLAN band rejection," Progress In Electromagnetics Research, Vol. 106, 17-31, 2010.
doi:10.2528/PIER10011905        Google Scholar

10. De la Morena-Álvarez-Palencia, C. and M. Burgos-Garcia, "Four-octave six-port receiver and its calibration for broadband communications and software defined radios," Progress In Electromagnetics Research, Vol. 116, 1-21, 2011.        Google Scholar

11. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.        Google Scholar

12. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative GM cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
doi:10.1163/156939310791036412        Google Scholar

13. Ye, C.-S., Y.-K. Su, M.-H. Weng, C.-Y. Hung, and R.-Y. Yang, "Design of the compact parallel-coupled lines wideband bandpass filters using image parameter method," Progress In Electromagnetics Research, Vol. 100, 153-173, 2010.
doi:10.2528/PIER09073002        Google Scholar

14. Emami, S. D., P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, and S. W. Harun, "Wide-band hybrid amplifier operating in S-band," Progress In Electromagnetics Research, Vol. 102, 301-313, 2010.
doi:10.2528/PIER10012303        Google Scholar

15. Wang, C.-J. and T. H. Lin, "A multi-band meandered slotted-groundplane resonator and its application of low-pass filter," Progress In Electromagnetics Research, Vol. 120, 249-262, 2011.        Google Scholar

16. Guo, J., Z. Xu, C. Qian, and W.-B. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011.        Google Scholar

17. Hotopan, G. R., S. Ver Hoeye, C. Vazquez Antuna, R. Camblor Diaz, M. Fernandez Garcia, F. Las-Heras, P. Alvarez, and R. Menéndez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.
doi:10.2528/PIER11051709        Google Scholar

18. Garcia, M. F., S. Ver Hoeye, C. Vazquez Antuna, G. R. Hotopan, R. Camblor Diaz, and F. Las-Heras, "New non-linear approach for the evaluation of the linearity of high gain harmonic self oscillating mixers," Progress In Electromagnetics Research, Vol. 126, 149-168, 2012.
doi:10.2528/PIER12011008        Google Scholar

19. Garcia, M. F., S. Ver Hoeye, C. Vazquez Antuna, G. R. Hotopan, R. Camblor Diaz, and F. Las-Heras, "Non linear optimization technique for the reduction of the frequency scanning effect in a phased array based on broadband injection-locked third harmonic self-oscillating mixers," Progress In Electromagnetics Research, Vol. 127, 479-499, 2012.
doi:10.2528/PIER12020606        Google Scholar

20. Wei, H. C., R. M.Weng, and S. Y. Li, "A broadband high linearity and isolation down-conversion mixer for WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1555-1565, 2009.
doi:10.1163/156939309789476392        Google Scholar

21. Chang, F.-C., P.-C. Huang, S.-F. Chao, and H. Wang, "A low power folded mixer for UWB system applications in 0.18-μm CMOS technology ," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 367-369, 2007.
doi:10.1109/LMWC.2007.895715        Google Scholar

22. Guo, B. and G. Wen, "Periodic time-varying noise in current-conmutating CMOS mixers," Progress In Electromagnetics Research, Vol. 117, 283-298, 2011.        Google Scholar

23. Liang, K.-H., H.-Y. Chang, and Y.-J. Chan, "A 0.5 - 7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 531-533, 2007.
doi:10.1109/LMWC.2007.899319        Google Scholar

24. Liang, K.-H. and H.-Y. Chang, "0.5-6 GHz low-voltage low-power mixer using a modified cascode topology in 0.18 μm CMOS technology," IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 167-174, 2011.
doi:10.1049/iet-map.2009.0292        Google Scholar

25. Khatri, H., P. S. Gudem, and L. E. Larson, "Distortion in current commutating passive CMOS downconversion mixers," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2671-2681, 2009.
doi:10.1109/TMTT.2009.2031930        Google Scholar

26. Park, C., H. Seo, and B. Kim, "A noise optimized passive mixer for charge-domain sampling applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1909-1917, 2009.
doi:10.1163/156939309789932458        Google Scholar

27. Cheng, W.-C., C.-F. Chan, K.-P. Pun, and C.-S. Choy, "A low voltage current mode CMOS integrated receiver front-end for GPS system," Analog Integrated Circuits and Signal Processing, Vol. 63, No. 1, 23-31, 2010.
doi:10.1007/s10470-009-9409-4        Google Scholar

28. Chen, Y. F., J. H. Fan, W. Li, and N. Li, "A current-mode RF transmitter for 6{9 GHz MB-OFDM UWB application," Science China Information Sciences, Vol. 54, No. 2, 419-428, 2011.
doi:10.1007/s11432-010-4170-y        Google Scholar

29. Wan, Q. Z. and C. H. Wang, "A low-voltage low-power CMOS transmitter front-end using current mode approach for 2.4 GHz wireless communications ," Microelectronics Journal, Vol. 42, No. 5, 766-771, 2011.
doi:10.1016/j.mejo.2011.01.009        Google Scholar

30. Fei, Y., "Low-voltage CMOS current-mode preamplifier: Analysis and design," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 53, No. 1, 23-39, 2006.        Google Scholar

31. Hampel, S. K., O. Schmitz, M. Tiebout, and I. Rolfes, "Inductorless low-voltage and low-power wideband mixer for multistandard receivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 5, 1384-1390, 2010.
doi:10.1109/TMTT.2010.2042894        Google Scholar

32. Chen, C.-H., P.-Y. Chiang, and C. F. Jou, "A low voltage mixer with improved noise figure," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 2, 92-94, 2009.
doi:10.1109/LMWC.2008.2011329        Google Scholar

33. Kim, J.-H., H.-W. An, and T.-Y. Yun, "A low-noise WLAN mixer using switched biasing technique," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 650-652, 2009.
doi:10.1109/LMWC.2009.2029746        Google Scholar

34. Hoang, L. V., N. T. Kien, S.-K. Han, S.-G. Lee, and S. B. Hyun, "Low power high linearity transmitter front-end for 900MHz Zigbee applications," IEEE International Symposium on Circuits and Systems, 1623-1626, 2006.        Google Scholar