1. Shahmansouri, A. and B. Rashidian, "GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media," Progress In Electromagnetics Research, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505 Google Scholar
2. Gao, P. C., Y. B. Tao, Z. H. Bai, and H. Lin, "Mapping the SBR and TW-ILDCs to heterogeneous CPU-GPU architecture for fast computation of electromagnetic scattering," Progress In Electromagnetics Research, Vol. 122, 137-154, 2012.
doi:10.2528/PIER11092303 Google Scholar
3. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807 Google Scholar
4. Banasiaka, R., Z. Yeb, and M. Soleimanic, "Improving three-dimensional electrical capacitance tomography imaging using approximation error model theory," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 411-421, 2012. Google Scholar
5. Jiang, W.-Q., M. Zhang, and Y. Wang, "CUDA-based radiative transfer method with application to the EM scattering from a two-layer canopy model," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2509-2521, 2010.
doi:10.1163/156939310793675772 Google Scholar
6. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Edition, CRC, 2000.
doi:10.1201/9781420058277
7. Fotyga, G., K. Nyka, and M. Mrozowski, "Effcient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
doi:10.2528/PIER12021609 Google Scholar
8. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaros, "Effcient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011. Google Scholar
9. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011. Google Scholar
10. Sun, H., Y. Wu, and Z. Ruan, "Edge-Based finite element method analysis of the transmission characteristics in antipodal finline," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 565-575, 2011.
doi:10.1163/156939311794500250 Google Scholar
11. Sun, H., Y. Wu, and Z. Ruan, "A study of transmission characteristics in elliptic-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2353-2364, 2011.
doi:10.1163/156939311798806176 Google Scholar
12. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons Inc., New York, 2002.
13. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics. Antennas, Microwave Circuits and Scattering Applications, IEEE Series on Electromagnetic Wave Theory, IEEE Press, NJ, 1998.
14. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves, Artech House Inc., 2009.
15. Dehnavi, M. M., D. M. Fernandez, and D. Giannacopoulos, "Finite-element sparse matrix vector multiplication on graphic processing unit," IEEE Transactions on Magnetics, Vol. 46, No. 8, 2982-2985, Aug. 2010.
doi:10.1109/TMAG.2010.2043511 Google Scholar
16. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory effcient and fast sparse matrix vector product on a GPU," Progress In Electromagnetics Research, Vol. 116, 49-63, Jan.2011. Google Scholar
17. Dziekonski, A., A. Lamecki, and M. Mrozowski, "GPU acceleration of multilevel solvers for analysis of microwave components with finite element method," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 1-3, 2011.
doi:10.1109/LMWC.2010.2089974 Google Scholar
18. Dziekonski, A., A. Lamecki, and M. Mrozowski, "Tuning a hybrid GPU-CPU V-Cycle multilevel preconditioner for solving large real and complex systems of FEM equations," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 619-622, 2011.
doi:10.1109/LAWP.2011.2159769 Google Scholar
19. Plaszewski, P., K. Banas, and P. Maciol, "Higher order FEM numerical integration on GPUs with OpenCL," Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT), 337-34, Oct. 18-20,2010. Google Scholar
20. Maciol, P., P. Plaszewski, and K. Banas, "3D finite element numerical integration on GPUs," Procedia Computer Science, Vol. 1, No. 1, 1093-1100, 2010.
doi:10.1016/j.procs.2010.04.121 Google Scholar
21. Markall, G., A. Slemmer, D. Ham, P. Kelly, C. Cantwell, and S. Sherwin, "Finite element assembly strategies on multi-core and many-core architectures," International Journal for Numerical Methods in Fluids, 2012. Google Scholar
22. Cecka, C., A. Lew, and E. Darve, "Application of assembly of finite element methods on graphics processors for real-time elastodynamics," GPU Gems 3, Jul. 2011. Google Scholar
23. Ingelstrom, P., "A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, 106-114, Jan.2006.
doi:10.1109/TMTT.2005.860295 Google Scholar
24. Zhang, L., T. Cui, and H. Liu, "A set of symmetric quadrature rules on triangles and tetrahedra," Journal of Computational Mathematics, Vol. 26, No. 3, 1-16, 2008. Google Scholar
25. Schberl, J., "NETGEN an advancing front 2D/3D-mesh generator based on abstract rules," Computing and Visualization in Science, Vol. 1, No. 1, 41-52, Jul.1997. Google Scholar
26. Sanders, J. and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, NVIDIA Co., 2011.
27. http://www.nvidia.com/content/PDF/fermi.. Google Scholar
28., CUBLAS Library Nvidia Co., 2011. Google Scholar
29. Saad, Y., Iterative Methods for Sparse Linear Systems,SIAM, 2004.
30. http://software.intel.com/en-us/articles/intel-mkl/. Google Scholar
31., CUDA CUSPARSE Library, NVIDIA Co.,2011. Google Scholar
32. http://www.cise.ufledu/research/sparse/umfpack.. Google Scholar