1. Asi, M. J. and N. I. Dib, "Design of multilayer microwave broadband absorbers using central force optimization," Progress In Electromagnetics Research B, Vol. 26, 101-103, 2010.
doi:10.2528/PIERB10090103 Google Scholar
2. Zhu, B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802 Google Scholar
3. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.
doi:10.2528/PIERB11071108 Google Scholar
4. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105 Google Scholar
5. Huang, H., F.-H. Xue, B. Lu, F. Wang, X.-L. Dong, and W.-J. Park, "Enhanced polarization in tadpole-shaped (NI, AL)/ALN nanoparticles and microwave absorption at high frequencies," Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011. Google Scholar
6. Lee, H.-M. and H.-S. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012. Google Scholar
7. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIERB09122102 Google Scholar
8. Malek, F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abd Aziz, A. R. Osman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011. Google Scholar
9. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 7, 319-334, 2012.
doi:10.2528/PIER12030601 Google Scholar
10. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-387, 2011. Google Scholar
11. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
12. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual-bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
13. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301 Google Scholar
14. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial - Glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711 Google Scholar
15. Kraszewski, A., "Prediction of the dielectric properties of two-phase mixtures," J. Microwave Power, Vol. 12, No. 13, 215-22, 1977. Google Scholar
16. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Vol. 8, 42-44, Pergamon Press, London, 1984.
17. Lichtenecker, K. and K. Rother, "Die herleitung des logarithmis-chen mischungs-gesetzes aus allegemeinen prinzipien der station-aren stromung," Physikalische Zeitschrift, Vol. 32, 255-260, 1931. Google Scholar
18. Liu, Y. H., J. M. Tang, and Z. H. Mao, "Analysis of bread dielectric properties using mixture equations," Journal of Food Engineering, Vol. 93, 72-79, 2009.
doi:10.1016/j.jfoodeng.2008.12.032 Google Scholar
19. You, K. Y. and Z. Abbas, Open-ended Coaxial Sensor Handbook: Formulations, Microwave Measurements and Applications, LAP Lambert Academic Publishing, 2010.
20. Jusoh, M. A., Z. Abbas, J. Hassan, B. Z. Azmi, and A. F. Ahmad, "A simple procedure to determine complex permittivity of moist materials using standard commercial coaxial sensor," Measurement Science Review, Vol. 11, No. 1, 2011.
doi:10.2478/v10048-011-0003-4 Google Scholar
21. Neelakantaswamy, P. S., K. F. Aspar, A. Rajaratnam, and N. P. Das, "A dielectric model of the human blood," Biomed. Tech., Vol. 28, No. 1-2, 18-22, 1983.
doi:10.1515/bmte.1983.28.1-2.18 Google Scholar
22. Agilent Technologies Inc., , "Agilent basics of measuring the dielectric properties of materials,", 1-32, Santa Clara, California, United States of America, 2005. Google Scholar
23. Subedi, P. and I. Chatterjee, "Dielectric mixture model for asphalt-aggregate mixtures," Journal of Microwave Power and Electromagnetic Energy., Vol. 28, No. 2, 1993. Google Scholar
24. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric studies of the pyramidal microwave absorber using rice husks," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003 Google Scholar
25. Nyfros, E. and P. Vainikainen, Industrial Microwave Sensors, Artech House, Inc., Norwood, MA, 1989.
26. Hsu, W. Y., W. G. Holtje, and J. R. Barkley, "Percolation phenomenon in polymer/carbon composites," Journal of Materials Science Letters, Vol. 7, 459-462, 1988.
doi:10.1007/BF01730688 Google Scholar
27. Kwon, S. K., J. M. Ahn, G. H. Kim, C. H. Chun, J. H. Lee, and J. S. Hwang, "Microwave absorbing properties of carbon black/silicone rubber blend," Polymer Engineering Science, Vol. 42, No. 11, 2165-2171, 2002.
doi:10.1002/pen.11106 Google Scholar
28. Achour, M. E., M. El Malhi, J. L. Miane, F.Carmona, and F. Lahjomri, "Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws," J. Appl. Polym. Sci., Vol. 73, No. 6, 969-973, 1999.
doi:10.1002/(SICI)1097-4628(19990808)73:6<969::AID-APP14>3.0.CO;2-1 Google Scholar
29. Moon, K. S., H. D. Choi, A. K. Lee, K. Y. Cho, H. G. Yoon, and K. S. Suh, "Dielectric properties of epoxy-dielectrics-carbon black composite for phantom materials at radio frequencies," J. Appl. Polym. Sci., Vol. 77, No. 6, 1294-1302, 2000.
doi:10.1002/1097-4628(20000808)77:6<1294::AID-APP14>3.0.CO;2-E Google Scholar
30. Chung, D. D. L., "Electromagnetic interference shielding effectiveness of carbon materials," Carbon, Vol. 39, No. 2, 279-85, 2001.
doi:10.1016/S0008-6223(00)00184-6 Google Scholar
31. Cao, M.-S., W.-L. Song, Z.-L. Hou, B. Wen, and J. Yuan, "The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites," Carbon, Vol. 48, 788-796, 2010.
doi:10.1016/j.carbon.2009.10.028 Google Scholar
32. Nornikman, H., M. F. B. A. Malek, M. Ahmed, F. H. Wee, P. J. Soh, and A. A. H. Azremi, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.
doi:10.2528/PIER10101203 Google Scholar
33. Blackham, D. V. and R. D. Pollard, "An improved technique for permittivity measurements using a coaxial probe," IEEE Trans. on Instrum. Meas., Vol. 46, No. 5, 1093-1099, 1997.
doi:10.1109/19.676718 Google Scholar