1. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetic Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603 Google Scholar
2. Han, L., S. Chen, A. Schulzgen, Y. Zeng, F. Song, J.-G. Tian, and N. Peyghambarian, "Calculation and optimization of electromagnetic resonances and local intensity enhancements for plasmon metamaterials with sub-wavelength double-slots," Progress In Electromagnetic Research, Vol. 113, 161-177, 2011. Google Scholar
3. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Super resolution enhancement for the superlens with anti-reflection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetic Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010 Google Scholar
4. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery ," Progress In Electromagnetic Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406 Google Scholar
5. Zhao, J., K. Li, F. Kong, and L.-G. Du, "Enhancement of blue light emission using surface plasmons coupling with quantum wells," Progress In Electromagnetic Research, Vol. 108, 293-306, 2010.
doi:10.2528/PIER10072906 Google Scholar
6. Nath, N. and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface," Analytical Chemistry, Vol. 74, 2002.
doi:10.1021/ac015657x Google Scholar
7. Samantha, S. and J. Bokatzian, Surface plasmon resonance: Principles and applications, Graduate Student Seminar Series, Department of Chemistry, University of Alabama, 2008.
8. Homola, J., et al. "Multi-analyte surface plasmon resonance biosensing," Methods, Vol. 37, 26-36, 2005.
doi:10.1016/j.ymeth.2005.05.003 Google Scholar
9. Davis, T. J., K. C. Vernon, and D. E. Gómez, "Designing plasmonic systems using optical coupling between nanoparticles," Physical Review B, Vol. 79, 155423-155432, 2009.
doi:10.1103/PhysRevB.79.155423 Google Scholar
10. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Nano-plasmonic biosensors: A review," IEEE/ICME International Conference on Complex Medical Engineering (CME), ICMEA'11, Harbin, China, 2011.
11. Haynes, C. L., A. D. McFarland, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," Analytical Chemistry, Vol. 77, 339-346, Sep. 1, 2005. Google Scholar
12. Maier, S. A. and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. of Applied Physics, Vol. 98, 2005.
doi:10.1063/1.1951057 Google Scholar
13. Link, S. and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods ," J. Physical Chemistry B, Vol. 103, 8410-8426, 1999.
doi:10.1021/jp9917648 Google Scholar
14. Zhang, S., et al. "Substrate-induced fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface Plasmon resonance sensors revealed ," Nano Letters, Vol. 11, 1657-1663, 2011.
doi:10.1021/nl200135r Google Scholar
15. Stuart, D. A., et al. "Glucose sensing using near-infrared surface-enhanced raman spectroscopy: Gold surfaces, 10-day stability, and improved accuracy," Analytical Chemistry, Vol. 77, 4013-4019, 2005.
doi:10.1021/ac0501238 Google Scholar
16. Sekhon, J. S. and S. S. Verma, "Rational selection of nanorod plasmons: Material, size, and shape dependence mechanism for optical sensors," Plasmonics, 1-7, 2012. Google Scholar
17. Lantiat, D., et al. "Evidence for capping-layer effects on the morphology and plasmon excitation of Ag nanoparticles," J. of Applied Physics, Vol. 102, 2007.
doi:10.1063/1.2821914 Google Scholar
18. Mortazavi, D., A. Z. Kouzani, A. Kaynak, and W. Duan, "Developing LSPR design guidlines," Progress In Electromagnetic Research, Vol. 126, 203-235, 2012.
doi:10.2528/PIER12011810 Google Scholar
19. Niu, J., et al. "Graphene induced tunability of the surface plasmon resonance," Applied Physics Letters, Vol. 100, 2012. Google Scholar
20. Elert, G., Resistivity of aluminum oxide, The Physics Factbook, E. Huang (ed.), http://hypertextbook.com/facts/2006/EuniceHuang.shtml, 2006.
21. Whitney, A. V., et al. "Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition," J. Physical Chemistry B, Vol. 109, 20522-20528, 2005.
doi:10.1021/jp0540656 Google Scholar
22. Zhang, X., et al. "Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection," American Chemical Society, Vol. 128, 10304-10309, 2006.
doi:10.1021/ja0638760 Google Scholar
23. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Investigating nanoparticle-substrate interaction in LSPR biosensing using the image-charge theory," EMBC'12, San Diego, USA, Aug. 2012. Google Scholar
24. Davis, T. J., D. E. Gomez, and K. C. Vernon, "Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles," Nano Letters, Vol. 10, 2618-2625, 2010.
doi:10.1021/nl101335z Google Scholar
25. Vernon, K. C., et al. "Influence of particle-substrate interaction on localized plasmon resonances," Nano Letters, Vol. 10, 2080-2086, 2010.
doi:10.1021/nl100423z Google Scholar
26. Gómez, D. E., K. C. Vernon, and T. J. Davis, "Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures," Physical Review B, Vol. 81, 075414-423, 2010. Google Scholar
27. Mishchenko, M. I., L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, 2000.
28. Yamaguchi, T., S. Yoshida, and A. Kinbara, "Optical effect of the substrate on the anomalous absorption of aggregated silver films," Thin Solid Films, Vol. 21, 173-187, 1974.
doi:10.1016/0040-6090(74)90099-6 Google Scholar
29. Lee, B., et al. "Review on subwavelength confinement of light with plasmonics," J. of Modern Optics, Vol. 57, 1479-1497, 2010.
doi:10.1080/09500340.2010.506985 Google Scholar
30. Petryayeva, E. and U. J. Krull, "Localized surface plasmon resonance: Nanostructures, bioassays and biosensing --- A review," Analytica Chimica Acta, Vol. 706, 8-24, 2011.
doi:10.1016/j.aca.2011.08.020 Google Scholar
31. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, London, Boston, 1995.
32. Vaccari, A., A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgriding FDTD algorithm for large simulations," Progress In Electromagnetic Research, Vol. 120, 263-292, 2011. Google Scholar
33. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU fro plasmonics applications ," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011. Google Scholar
34. Singh, R., et al. "Sharp fano resonances in THz metamaterials," Optics Express, Vol. 19, 6312-6319, 2011.
doi:10.1364/OE.19.006312 Google Scholar
35. Zhang, W., B. Gallinet, and O. J. F. Martin, "Symmetry and selection rules for localized surface plasmon resonances in nanostructures," Physical Review B, Vol. 81, 233407-233410, 2010.
doi:10.1103/PhysRevB.81.233407 Google Scholar
36. Fan, X., et al. "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta, Vol. 620, 8-26, 2008.
doi:10.1016/j.aca.2008.05.022 Google Scholar
37. Lahav, A., M. Auslender, and I. Abdulhalim, "Sensitivity enhancement of guided-wave surface-plasmon resonance sensors," Optics Letters, Vol. 33, 2539-2541, 2008.
doi:10.1364/OL.33.002539 Google Scholar
38. Shalabney, A. and I. Abdulhalim, "Sensitivity-enhancement methods for surface plasmon sensors," Laser & Photonics Reviews, Vol. 5, 571-606, 2011.
doi:10.1002/lpor.201000009 Google Scholar
39. Kang, M., et al. "Protein capture in silica nanotube membrane 3-D microwell arrays," Anal. Chem., Vol. 77, 6243-6249, 2005.
doi:10.1021/ac0508907 Google Scholar
40. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution ," Progress In Electromagnetic Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103 Google Scholar
41. Lide, D. R., CRC Handbook of Chemistry and Physics, 87th Ed., Taylor and Francis Group, Boca Raton, FL, 2007.
42. Jin, Y., D. Gao, and L. Gao, "Plasmonic resonant light scattering by a cylinder with radial anisotropy," Progress In Electromagnetic Research, Vol. 106, 335-347, 2010.
doi:10.2528/PIER10060601 Google Scholar
43. Kuwata, H., et al. "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Applied Physics Letters, Vol. 83, 4625-4627, 2003.
doi:10.1063/1.1630351 Google Scholar
44. Mortazavi, D., et al. "Plasmon eignevalues as a function of nano-spheroids size and elongation ," Proceeding of ICMEA'12, Kobe, Japan, Jul. 2012.