1. Perry, R. P., R. C. Dipietro, and R. L. Fante, "SAR imaging of moving targets," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 1, 188-200, 1999.
doi:10.1109/7.745691 Google Scholar
2. Mao, X. H., D. Y. Zhu, L. Ding, and Z. D. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010.
doi:10.2528/PIER10090607 Google Scholar
3. Zhou, F., R. Wu, M. Xing, and Z. Bao, "Approach for single channel SAR ground moving target imaging and motion parameter estimation," IET Radar, Sonar & Navigation, Vol. 1, 59-66, 2007.
doi:10.1049/iet-rsn:20060040 Google Scholar
4. Zhu, D., Y. Li, and Z. Zhu, "A keystone transform without interpolation for SAR ground moving-target imaging," IEEE Trans. Geoscience & Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
doi:10.1109/LGRS.2006.882147 Google Scholar
5. Graham, L. C., "Synthetic interferometric radar for topographic mapping," IEEE Proceedings, Vol. 62, 763-768, 1974.
doi:10.1109/PROC.1974.9516 Google Scholar
6. Wu, B.-I., M. C. Yeung, Y. Hara, and J. A. Kong, "Insar height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902 Google Scholar
7. Li, S., H. Xu, and L. Zhang, "An advanced DSS-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
doi:10.2528/PIER11042301 Google Scholar
8. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011. Google Scholar
9. Fan, C.-Y., X.-T. Huang, T. Jin, J.-G. Yang, and D.-X. An, "Novel pre-processing techniques for coherence improving in along-track dual-channel low frequency SAR ," Progress In Electromagnetics Research, Vol. 128, 171-193, 2012. Google Scholar
10. Zhang, Y., X. Zhang, et al. "Moving train imaging by ground-based Ka-band radar," Loughborough Antenna and Propagation Conference (LAPC), 413-416, Loughborough, UK, Nov. 16-18, 2009.
11. Zhang, X., W. Zhai, and Y. Zhang, "A prototype for stepped-frequency SAR dechirp imaging system and experimental verification," Asia-Paci¯c Microwave Conference (APMC), Singapore, Dec. 7-10, 2009. Google Scholar
12. Zhang, Y., X. Zhang, W. Zhai, X. Shi, and X. Gu, "Radar imaging and electromagnetic scattering analysis for moving train by ku-band ground-based interferometric radar," Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 7-10, 2009. Google Scholar
13. Zhang, Y., Y. Deng, W. Zhai, X. Zhang, and J. Jiang, "Time-frequency processing and analysis of radar imaging experiment data for a moving train," The 7th IASTED International Conference on Antennas, Radar and Wave Propagation (ARP), Cambridge, Massachusetts, USA, Nov. 1-3, 2010.
14. Yu, L. and Y. Zhang, "Application of the fractional fourier transform to moving train imaging," Progress In Electromagnetics Research M, Vol. 19, 13-23, 2011.
doi:10.2528/PIERM11051401 Google Scholar
15. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901 Google Scholar
16. Burkholder, R. J., I. J. Gupta, and J. T. Johnson, "Comparison of monostatic and bistatic radar images," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 41-50, 2003.
doi:10.1109/MAP.2003.1232162 Google Scholar
17. Calvo-Gallego, J. and F. Pérez-Martínez, "Simple traffic surveillance system based on range-doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809 Google Scholar
18. Woo, J.-C., B.-G. Lim, and Y.-S. Kim, "Modification of the recursive sidelobe minimization technique for the range-doppler algorithm of SAR imaging," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1783-1794, 2011.
doi:10.1163/156939311797453926 Google Scholar
19. Koo, V. C., Y. K. Chan, and H. T. Chuah, "Multiple phase difference method for real-time SAR autofocus," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 375-388, 2006.
doi:10.1163/156939306775701713 Google Scholar
20. Koo, V. C., Y. K. Chan, and H. T. Chuah, "A new autofocus based on sub-aperture approach," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1547-1561, 2005.
doi:10.1163/156939305775701912 Google Scholar
21. Koo, V. C., T. S. Lim, M. V. C. Rao, and H. T. Chuah, "A GA-based autofocus technique for correcting high-frequency sar phase error," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 6, 781-795, 2004.
doi:10.1163/156939304323105862 Google Scholar
22. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis ," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601 Google Scholar
23. Nawab, H. and T. F. Quatieri, "Short-time fourier transform," Advanced Topics in Signal Processing, J. S. Lim, and A. V. Oppenheim, Editors, Chapter 6, 289-337, Prentice Hall, New Jersey, 1988. Google Scholar
24. Son, J. S., G. Thomas, and B. C. Flores, "Range-Doppler Radar Imaging and Motion Compensation," Artech Hourse, Norwood, 2001. Google Scholar
25. Chen, V. C. and H. Ling, Time-Frequency Transforms for Radar Imaging and Signal Analysis, Artech Hourse, Norwood, 2002.