1. Ku, G., B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, and L. V. Wang, "Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. Treat., Vol. 4, No. 5, 1-7, 2005. Google Scholar
2. Kruger, R. A., P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoa-coustic ultrasound (PAUS) --- Reconstruction tomography," Med. Phys., Vol. 22, No. 10, 1605-1609, 1995.
doi:10.1118/1.597429 Google Scholar
3. Ku, G. and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution and contrast," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409 Google Scholar
4. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermo-acoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 839-842, 2005. Google Scholar
5. Xu, M. and L. V. Wang, "Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration," Med. Phys., Vol. 29, No. 8, 1661-1669, 2002.
doi:10.1118/1.1493778 Google Scholar
6. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inv. Probl., Vol. 24, No. 5, 055006, 2008.
doi:10.1088/0266-5611/24/5/055006 Google Scholar
7. Hristova, Y., "Time reversal in thermoacoustic tomography --- An error estimate," Inv. Probl., Vol. 25, No. 5, 055008, 2009.
doi:10.1088/0266-5611/25/5/055008 Google Scholar
8. Agranovsky, M. and P. Kuchment, "Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography," Inv. Probl., Vol. 23, No. 5, 2089, 2007.
doi:10.1088/0266-5611/23/5/016 Google Scholar
9. Jin, X. and L. V. Wang, "Thermoacoustic tomography with correction for acoustic speed variations," Phys. Med. Biol., Vol. 51, 6437-6448, 2006.
doi:10.1088/0031-9155/51/24/010 Google Scholar
10. Jin, X., C. Li, and L. V. Wang, "Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography," Med. Phys., Vol. 35, No. 7, 3205-3214, 2008.
doi:10.1118/1.2938731 Google Scholar
11. Zhang, J. and M. A. Anastasio, "Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography ," Proc. SPIE, Vol. 6086, 339-345, 2006. Google Scholar
12. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112 Google Scholar
13. Cox, B. T. and B. E. Treeby, "Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media," IEEE Trans. Med. Imag., Vol. 29, No. 2, 387-396, 2010.
doi:10.1109/TMI.2009.2032358 Google Scholar
14. Xu, Y. and L. V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Trans. Ultrason., Ferroelect. Control., Vol. 50, No. 9, 1134-1146, 2003.
doi:10.1109/TUFFC.2003.1235325 Google Scholar
15. Li, S., K. Mueller, M. Jackowski, D. Dione, and L. Staib, "Fast marching method to correct for refraction in ultrasound computed tomography," IEEE International Symposium in Biomedical Imaging (ISBI), 896-899, 2006.
16. Andersen, A. and A. Kak, "Simultaneous algebraic reconstruction technique (SART)," Ultrason. Imaging, Vol. 6, 81-94, 1984.
doi:10.1016/0161-7346(84)90008-7 Google Scholar
17. Duric, N., P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, "Detection of breast cancer with ultrasound tomography: First results with the computed ultrasound risk evaluation (CURE) prototype," Med. Phys., Vol. 34, No. 2, 773-785, 2007.
doi:10.1118/1.2432161 Google Scholar
18. Li, S., M. Jackowski, D. Dione, L. Staib, and K. Mueller, "Refraction corrected transmission ultrasound computed tomography for application in breast imaging," Med. Phys., Vol. 37, No. 5, 2233-2246, 2010.
doi:10.1118/1.3360180 Google Scholar
19. Duric, N., P. Littrup, A. Babkin, D. Chambers, and S. Azevedo, "Development of ultrasound tomography for breast imaging: Technical assessment," Med. Phys., Vol. 32, No. 5, 1375-1386, 2005.
doi:10.1118/1.1897463 Google Scholar
20. Quan, Y. and L. Huang, "Sound-speed tomography using first-arrival transmission ultrasound for a ring array," Proc. SPIE, Vol. 6513, 2007. Google Scholar
21. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Phys. Rev. Lett., Vol. 92, No. 3, 1-4, 2004.
doi:10.1103/PhysRevLett.92.033902 Google Scholar
22. Fink, M., "Time reversal of ultrasonic fields I. Basic principles," IEEE Trans. Ferroelectrics, Frequency Control., Vol. 39, No. 5, 555-567, 1992.
doi:10.1109/58.156174 Google Scholar
23. Fink, M. and C. Prada, "Acoustic time reversal mirror," Inv. Probl., Vol. 17, No. 1, 1-38, 2001.
doi:10.1088/0266-5611/17/1/201 Google Scholar
24. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "A computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 12, 2191-2204, 2008.
doi:10.1163/156939308787522555 Google Scholar
25. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11, 1565-1574, 2008.
doi:10.1163/156939308786390021 Google Scholar
26. Zhang, H., C. Thurber, and C. Rowe, "Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings," Bull. Seism. Soc. Am., Vol. 93, No. 5, 1904-1912, 2003.
doi:10.1785/0120020241 Google Scholar
27. Ramananantoandro, R. and N. Bernitsas, "A computer algorithm for automatic picking of refraction first-arrival-time," Geoexploration, Vol. 24, No. 2, 147-151, 1987.
doi:10.1016/0016-7142(87)90088-3 Google Scholar
28. Capozzoli, A., C. Curcio, and A. Liseno, "GPU-based omega-k tomographic processing by 1D non-uniform FFTs," Progress In Electromagnetics Research M, Vol. 23, 279-298, 2012.
doi:10.2528/PIERM11083003 Google Scholar
29. Jiang, M. and G. Wang, "Convergence of the simultaneous algebraic reconstruction technique (SART)," IEEE Trans. Imag. Proc., Vol. 12, No. 8, 2003. Google Scholar
30. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350 Google Scholar
31. Mast, T. D., "Empirical relationships between acoustic parameters in human soft tissue," Acoust. Res. Lett., Vol. 1, No. 2, 37-42, 2000.
doi:10.1121/1.1336896 Google Scholar
32. Cox, B. T., S. Kara, S. R. Arridge, and P. C. Beard, "k-space propagation models for acoustic heterogeneous media: Application to biomedical photoacoustic ," J. Acoust. Soc. Am., Vol. 121, No. 6, 3453-3464, 2007.
doi:10.1121/1.2717409 Google Scholar
33. Treeby, B. E. and B. T. Cox, "k-wave: A MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308 Google Scholar
34. Li, C., L. Huang, N. Duric, H. Zhang, and C. Rowe, "An improved automatic time-of-flight picker for medical ultrasound tomography," Ultrasonic, Vol. 49, No. 1, 61-72, 2009.
doi:10.1016/j.ultras.2008.05.005 Google Scholar