1. Yu, B., et al. "Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources," IEEE Journal of Lightwave Technology, Vol. 24, No. 4, 1758-1767, Apr. 2006.
doi:10.1109/JLT.2005.863336 Google Scholar
2. Murphy, K. A., M. F. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, "Extrinsic Fabry-Pérot optical fiber sensor," Proc. 8th Opt. Fiber Sens. Conf., 193-196, 1992.
3. Furstenau, N., M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, "Extrinsic Fabry-Pérot interferometer vibration and acoustic systems for airport ground tra±c monitoring," Proc. Inst. Elect. Eng. --- Optoelectron, Vol. 144, No. 3, 134-144, 1997.
doi:10.1049/ip-opt:19971268 Google Scholar
4. Wang, A., H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, "Self-calibrated interferometric-intensity-based optical fiber sensors ," IEEE Journal of Lightwave Technology, Vol. 19, No. 10, 1495-1501, 2001.
doi:10.1109/50.956136 Google Scholar
5. Yao, H.-Y. and T.-H. Chang, "Experimental and theoretical studies of a broadband superluminality in Fabry-Perot interferometer," Progress In Electromagnetics Research, Vol. 122, 1-13, 2012.
doi:10.2528/PIER11092707 Google Scholar
6. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702 Google Scholar
7. Han, M., Y. Zhang, F. Shen, G. R. Pickrell, and A.Wang, "Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors," Optics Letters, Vol. 29, No. 15, 1736-1738, Aug. 2004.
doi:10.1364/OL.29.001736 Google Scholar
8. Chen, J. H., J. R. Zhao, X. G. Huang, and Z. J. Huang, "Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass," Applied Optics, Vol. 49, No. 29, 5592-5596, Oct. 2010.
doi:10.1364/AO.49.005592 Google Scholar
9. Zhou, X. and Q. Yu, "Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement," IEEE Sensors Journal, Vol. 11, No. 7, 1602-1606, Jul. 2011.
doi:10.1109/JSEN.2010.2103307 Google Scholar
10. Zhang, Y., H. Shibru, K. L. Cooper, and A. Wang, "Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor," Optics Letters, Vol. 30, No. 9, 1021-1023, May 2005.
doi:10.1364/OL.30.001021 Google Scholar
11. Wilkinson, P. R. and J. R. Pratt, "Analytical model for low finesse, external cavity, fiber Fabry-Perot interferometers including multiple re°ections and angular misalignment," Applied Optics, Vol. 50, No. 23, 4671-4680, Aug. 2011.
doi:10.1364/AO.50.004671 Google Scholar
12. Kilic, O., M. J. F. Digonnet, G. S. Kino, and O. Solgaard, "Asymmetrical spectral response in fiber Fabry-Pérot interferometers," IEEE Journal of Lightwave Technology, Vol. 27, No. 24, 5648-5656, Dec. 2009.
doi:10.1109/JLT.2009.2032135 Google Scholar
13. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., IET, London, 2007.
14. Bouma, B. and G. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, 2002.
15. Isikman, S. O., et al. "Lensfree on-chip microscopy and tomography for biomedical applications," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 3, 1059-1072, May{Jun. 2012.
doi:10.1109/JSTQE.2011.2161460 Google Scholar
16. Di Donato, A., M. Farina, A. Morini, G. Venanzoni, D. Mencarelli, M. Candeloro, and M. Farina, "Using correlation maps in a wide-band microwave GPR," Progress In Electromagnetics Research B, Vol. 30, 371-387, 2011. Google Scholar
17. Farina, M., et al. "Disentangling time in a near-field approach to scanning probe microscopy," Nanoscale, Vol. 3, No. 9, 3589-3593, Sep. 2011.
doi:10.1039/c1nr10491h Google Scholar
18. Farina, M., et al. "Algorithm for reduction of noise in ultra-microscopy and application to near-field microwave microscopy," IET Elect. Lett., Vol. 46, No. 1, 50-52, Jan. 2010.
doi:10.1049/el.2010.2859 Google Scholar
19. Kaklamani, D. I., "Full-wave analysis of a Fabry-Perot type resonator," Progress In Electromagnetics Research, Vol. 24, 279-310, 1999.
doi:10.2528/PIER99042601 Google Scholar
20. Poularikas, A., The Transform and Application Handbook, 2nd Ed., CRC Press, 1999.
21. Lee, D. L., Electromagnetic Principles of Integrated Optics, John Wiley & Sons, 1986.
22. Ramo, S., J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, 1994.
23. Di Donato, A., et al. "Stationary mode distribution and sidewall roughness effects in overmoded optical waveguides," IEEE Journal of Lightwave Technology, Vol. 28, No. 10, 1510-1520, 2010.
doi:10.1109/JLT.2010.2045154 Google Scholar
24. Di Donato, A., L. Scalise, and L. Zappelli, "Noncontact speckle-based velocity sensor," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 1, 51-57, 2004.
doi:10.1109/TIM.2003.821482 Google Scholar
25. Andretzky, P., et al. "Optical coherence tomography by `spectral radar,' dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, Optical and Imaging Techniques for Biomonitoring IV , Vol. 78, Feb. 1999. Google Scholar