1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-6, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-7, 2000. Google Scholar
3. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKHI, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-9, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
5. Shen, N. H., S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Compact planar far-field superlens based on anisotropic left-handed metamaterials," Physical Review Letters B, Vol. 80, 115123, 2009. Google Scholar
6. Driscoll, T., D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Applied Physics Letters, Vol. 88, 081101-1-3, 2006. Google Scholar
7. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, No. 7, 077405-1-4, 2003.
doi:10.1103/PhysRevLett.90.077405 Google Scholar
8. Smith, D. R., P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," Journal of the Optical Society of America B: Optical Physics, Vol. 21, No. 5, 1032-1042, 2004.
doi:10.1364/JOSAB.21.001032 Google Scholar
9. Liu, H., Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, "Focusing of vectorial fields by a slab of indefinite media," Journal of Optics A: Pure and Applied Optics, Vol. 11, 105103, 2009.
doi:10.1088/1464-4258/11/10/105103 Google Scholar
10. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review Letters B, Vol. 79, 245127, 2009. Google Scholar
11. Cheng, Q. and T. J. Cui, "Planar microwave lens based on complementary metamaterials," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010. Google Scholar
12. Salandrino, A. and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Physical Review Letters B, Vol. 74, 075103, 2006. Google Scholar
13. Schurig, D. and D. R. Smith, "Spatial filtering using media with indefinite permittivity and permeability tensors," Applied Physics Letters, Vol. 82, No. 14, 2215-7, 2003.
doi:10.1063/1.1562344 Google Scholar
14. Smith, D. R., D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Applied Physics Letters, Vol. 84, No. 13, 2244-6, 2004.
doi:10.1063/1.1690471 Google Scholar
15. Nemat-Nasser, S. C., A. V. Amirkhizi, W. J. Padilla, D. N. Basov, S. Nemat-Nasser, D. Bruzewicz, and G. Whitesides, "Terahertz plasmonic composites," Physical Review E, Vol. 75, 036614-1-7, 2007. Google Scholar
16. Smith, D. R., D. C. Vier, W. J. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Applied Physics Letters, Vol. 75, No. 10, 1425-7, 1999.
doi:10.1063/1.124714 Google Scholar
17. Nemat-Nasser, S., S. C. Nemat-Nasser, T. Plaisted, A. Starr, and A. V. Amirkhizi, "Multifunctional materials," BIOMIMETICS: Biologically Inspired Technologies, Y. Bar-Cohen, Ed., 309-341, CRC Press, 2005. Google Scholar
18. Marshall, S., A. V. Amirkhizi, and S. Nemat-Nasser, "Focusing and negative refraction in anisotropic indefinite permittivity media," Proceedings of the International Society for Optical Engineering Electroactive Polymer Actuators and Devices (EAPAD), Y. Bar-Cohen, T. Wallmersperger (eds.), San Diego, 2009. Google Scholar