1. Booske, J., R. Dobbs, C. Joy, C. Kory, G. Neil, G. Park, J. Park, and R. Temkin, "Vaccum electronic high power terahertz sources," IEEE Trans. Terahertz Sci. Tech., Vol. 1, No. 1, 54-75, 2011.
doi:10.1109/TTHZ.2011.2151610 Google Scholar
2. Heh, D. Y. and E. L. Tan, "Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental adi-FDTD method," Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012.
doi:10.2528/PIERB11090905 Google Scholar
3. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 12, 93-103, 2012.
doi:10.2528/PIER11101401 Google Scholar
4. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902 Google Scholar
5. Zhang, Y.-X., S. Qiao, T. Zhao, W. Ling, and S. Liu, "Planar symmetric normal and complementary three-resonance resonators in terahertz band," Progress In Electromagnetics Research, Vol. 125, 21-35, 2012.
doi:10.2528/PIER11122110 Google Scholar
6. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605 Google Scholar
7. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304 Google Scholar
8. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011. Google Scholar
9. Andres-Garcia, B., L. E. Garcia-Munoz, D. Segovia-Vargas, I. Camara-Mayorga, and R. Gusten, "Ultrawideband antenna excited by a photomixer for terahertz band," Progress In Electromagnetics Research, Vol. 114, 1-15, 2011. Google Scholar
10. Zhou, Y. and S. Lucyszyn, "Modelling of reconfigurable terahertz integrated architecture (Retina) SIW structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806 Google Scholar
11. Laurette, S., A. Treizebre, N.-E. Bourzgui, and B. Bocquet, "Terahertz interferometer for integrated Goubau-line waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 49-58, 2012.
doi:10.2528/PIERL11121205 Google Scholar
12. Diao, J., F. Yang, L. Du, J. Ou Yang, and P. Yang, "Enhancing terahertz radiation from dipole photoconductive antenna by blending tips," Progress In Electromagnetics Research Letters, Vol. 25, 127-134, 2011. Google Scholar
13. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105 Google Scholar
14. Diao, J. M., F. Yang, Z.-P. Nie, J. Ou Yang, and P. Yang, "Separated fractal antennas for improved emission performance of terahertz radiations," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1158-1167, 2012.
doi:10.1080/09205071.2012.710562 Google Scholar
15. Diao, J. M., L. Du, J. Ou Yang, P. Yang, and Z.-P. Nie, "Enhanced center frequency of terahertz pulse emission from photoconductive antenna," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2236-2243, 2011.
doi:10.1163/156939311798147006 Google Scholar
16. Gao, Z. and Z.-Y. Wang, "Terahertz plasmonic cross resonant optical antenna," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1730-1739, 2011.
doi:10.1163/156939311797164954 Google Scholar
17. Zhang, X. F., L. F. Shen, J.-J. Wu, and T.-J. Yang, "Backward guiding of terahertz radiation in periodic dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 557-564, 2010. Google Scholar
18. Chen, D. and H. Chen, "Highly birefringent low-loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1553-1562, 2010.
doi:10.1163/156939310792149623 Google Scholar
19. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a gaas membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012. Google Scholar
20. Ding, S., B.-F. Jia, F.-X. Li, and Z.-J. Zhu, "3D Simulation of 18-vane 5.8 GHz Magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946 Google Scholar
21. Ashutosh, B., R. Chandra, and P. K. Jain, "Multimode behavior of a 42 GHz, 200kW gyrotron," Progress In Electromagnetics Research B, Vol. 42, 75-91, 2012. Google Scholar
22. Singh, U., N. Kumar, S. Tandon, H. Khatun, L. P. Purohit, and A. K. Sinha, "Numerical simulation of magnetron injection gun for 1mw 120 GHz gyrotron," Progress In Electromagnetics Research Letters, Vol. 16, 21-34, 2010.
doi:10.2528/PIERL10031503 Google Scholar
23. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100 kw cw gyrotron for plasma diagnostics: Gds-v.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508 Google Scholar
24. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35 GHz gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011. Google Scholar
25. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in Gyro-TWT (part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305 Google Scholar
26. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in Gyro-TWT (part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505 Google Scholar
27. Hou, Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012. Google Scholar
28. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, and Y.-B. Gong, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906 Google Scholar
29. Seshadri, R., S. K. Ghosh, A. Bhansiwal, S. Kamath, and P. K. Jain, "A simple analysis of helical slow-wave structure loaded by dielectric embedded metal segments for wideband traveling-wave tubes," Progress In Electromagnetics Research B, Vol. 20, 303-320, 2010.
doi:10.2528/PIERB10031201 Google Scholar
30. Zheng, R., P. Ohlckers, and X. Chen, "Particle-in-cell simulation and optimization for a 220 GHz folded waveguide traveling wave tube," IEEE Trans. Electron Devices, Vol. 58, No. 7, 2164-2171, 2011.
doi:10.1109/TED.2011.2145420 Google Scholar
31. Gensheimer, P. D., C. K. Walker, R. W. Ziolkowski, and C. D. Aubigny, "Full-scale three-dimensional simulations of a folded-waveguide traveling-wave tube using ICEPIC," IEEE Trans. Terahertz Sci. Tech., Vol. 2, No. 3, 222-230, 2011. Google Scholar
32. Gong, Y., H. Yin, L. Yue, Z. Lu, Y. Wei, J. Feng, Z. Duan, and X. Xu, "A 140 GHz two beam over moded folded-waveguide traveling-wave tube," IEEE Trans. Terahertz Sci. Tech., Vol. 39, No. 3, 847-851, 2011. Google Scholar
33. Mineo, M. and C. Paoloni, "Corrugated rectangular waveguide tunable backward wave oscillator for THz applications," IEEE Trans. Plasma Sci., Vol. 57, No. 5, 1481-1484, 2010. Google Scholar
34. Xu, X., Y.Wei, F. Shen, Z. Duan, Y. Gong, H. Yin, and W.Wang, "Sine waveguide for 0.22 THz traveling wave tube," IEEE Electron Device Letters, Vol. 32, No. 8, 1152-1153, 2011.
doi:10.1109/LED.2011.2158060 Google Scholar
35. Xu, X., Y. Wei, F. Shen, Z. Duan, Y. Gong, H. Yin, and W. Wang, "140 GHz V-shaped microstrip meander-line traveling wave tube," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 8, 1152-1153, 2011. Google Scholar
36. Zhang, M. H, Y.-Y. Wei, G. Guo, L. -N. Yue, Y. Hou, S. M. Wang, J. Xu, Y.-B. Gong, and W.-X. Wang, "A novel 140-GHz sheet-beam folded-waveguide traveling-wave tube," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 1-9, 2012. Google Scholar
37. Naumenko, V. D., K. Schunemann, and D. M. Vavriv, "Miniature 1 kW, 95 GHz magnetrons," Electronics Letters, Vol. 35, No. 22, 1960-1961, 1998.
doi:10.1049/el:19991337 Google Scholar
38. Naumenko, V. D., A. Suvorov, and A. Sirov, "Tunable magnetron of a two-millimeter-wavelength band," Microwave and Optical Technology Letters, Vol. 12, No. 3, 129-131, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<129::AID-MOP3>3.0.CO;2-J Google Scholar
39. Collins, G. B., Microwave Magnetrons, McGrow-Hill, New York, 1948.
40. Schunemann, K., A. E. Serebryannikov, S. V. Sosnytskiy, and D. M. Vavriv, "Optimizing the spatial-harmonic millimeter-wave magnetron," Physics of Plasmas, Vol. 10, No. 6, 2559-2565, 2003.
doi:10.1063/1.1565337 Google Scholar
41. Yu, S., G. Kooyers, and O. Bunemann, "Time dependent computer analysis of electron-wave interaction in crossed fields," Journal of Appl. Phys., Vol. 36, No. 8, 2550-2559, 1965.
doi:10.1063/1.1714528 Google Scholar
42. Schunemann, K., S. V. Sosnytskiy, and D. M. Vavriv, "Self-consistent simulation of the spatial-harmonic magnetron with cold secondary-emission cathode," IEEE Trans. Electron Devices, Vol. 48, No. 5, 993-998, 2001.
doi:10.1109/16.918248 Google Scholar
43. Andreev, A. D. and K. J. Hendricks, "ICEPIC simulation of a strapped nonrelativistic high-power CW UHF magnetron with a solid cathode operating in the space-charge limited regime ," IEEE Trans. Plasma Sci., Vol. 40, No. 6, 1551-1562, 2012.
doi:10.1109/TPS.2011.2177997 Google Scholar
44. Fleming, T. P., M. Lambrecht, and P. Mardahl, "Design and simulation of a Mega-watt class non relativistic magnetron," IEEE Trans. Plasma Sci., Vol. 40, No. 6, 1563-1568, 2012.
doi:10.1109/TPS.2012.2187288 Google Scholar
45. Kovalenko, V. F., Physics of Heat Transfer and Electro-vacuum Devices, Soviet Radio, Moscow, 1975.
46. Latham, R. V., High Voltage Vacuum Insulation, Academic Press, London, 1995.