1. Soliman, E. A., et al. "Series-fed microstrip antenna arrays operating at 26 GHz," IEEE Int. Symp. Antennas Propagat. Soc., 1-4, 2010. Google Scholar
2. Huang, K.-C. and D. J. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communications, John Wiley & Sons Ltd., United Kingdom, 2008.
3. Kolak, F. and C. Eswarappa, "A low profile 77 GHz three beam antenna for automotive radar," IEEE MTT-S Int Microw. Symp. Digest, Vol. 2, 1107-1110, 2001. Google Scholar
4. Rebollo, A., et al. "A broadband radiometer configuration at 94 GHz in planar technology," IEEE MTT-S Int. Microw. Workshop Series on Millimeter Wave Integration Technol. IMWS), 89-92, 2011. Google Scholar
5. Schulwitz, L. and A. Mortazawi, "Millimeter-wave dual polarized L-shaped horn antenna for wide-angle phased arrays," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 9, 2663-2668, Sept. 2006.
doi:10.1109/TAP.2006.880761 Google Scholar
6. Xu, O., "Diagonal horn gaussian e±ciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011. Google Scholar
7. Miura, Y., et al. "Double-layer full-corporate-feed hollow waveguide slot array antenna in the 60-GHz band," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 2844-2851, Aug. 2011.
doi:10.1109/TAP.2011.2158784 Google Scholar
8. Bakhtafrooz, A. and A. Borj, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706 Google Scholar
9. Pan, Y.-M., et al. "Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 2780-2788, Sept. 1983 Aug. 2011.
doi:10.1109/TAP.2011.2158962 Google Scholar
10. Perron, A., et al. "High-gain hybrid dielectric resonator antenna for millimeter-wave applications: Design and implementation," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2882-2992, Oct. 2009.
doi:10.1109/TAP.2009.2029292 Google Scholar
11. Cui, B., C. Wang, and X.-W. Sun, "Microstrip array double-antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
doi:10.2528/PIER06110902 Google Scholar
12. Nesic, A., et al. "Millimeter wave printed antenna array with high side lobe suppression ," IEEE Int. Symp. Antennas Propagat. Soc., 3051-3054, 2006. Google Scholar
13. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Trans. on Antennas and Propagat., Vol. 31, No. 5, 740-747.
doi:10.1109/TAP.1983.1143124 Google Scholar
14. Costanzo, S., I. Venneri, G. D. Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, Vol. 83, 173-183, 2008.
doi:10.2528/PIER08051404 Google Scholar
15. Douvalis, V., et al. "A monolithic active conical horn antenna array for millimeter and submillimeter wave applications," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 5, 1393-1398, May 2006.
doi:10.1109/TAP.2006.874338 Google Scholar
16. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012. Google Scholar
17. Matekovits, L., M. Heimlich, and K. P. Esselle, "Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 49-61, 2011.
doi:10.1163/156939311793898260 Google Scholar
18. Yeap, S. B., et al. "Gain-enhanced 60-GHz LTCC antenna array with open air cavities," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3470-3473, Sept. 2011.
doi:10.1109/TAP.2011.2161549 Google Scholar
19. De Lange, G., et al. "Development of a 3×3 micromachined millimeter wave SIS imaging array," IEEE Trans. on Appl. Superconductivity, Vol. 7, No. 2, 3593-3597, Jun. 1997.
doi:10.1109/77.622179 Google Scholar
20. Camblor-Diaz, R., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, M. G. Fernandez, and F. Las-Heras, "Sub-millimeter wave frequency scanning 8×1 antenna array," Progress In Electromagnetics Research, Vol. 132, 215-232, 2012. Google Scholar
21. Kramer, O., et al. "Very small footprint 60 GHz stacked Yagi antenna array," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3204-3210, Sept. 2011.
doi:10.1109/TAP.2011.2161562 Google Scholar
22. Hayashi, Y., et al. "Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure," IEEE Trans. on Antennas and Popagat., Vol. 59, No. 2, 398-406, Feb. 2011.
doi:10.1109/TAP.2010.2096180 Google Scholar
23. Akkermans, J. A. G., et al. "Balanced-fed planar antenna for millimeter-wave transceivers," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2871-2881, Oct. 2009.
doi:10.1109/TAP.2009.2029278 Google Scholar
24. Seki, T., et al. "Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on teflon substrate," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 6, 2101-2106, Jun. 2005. Google Scholar
25. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi-optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404 Google Scholar
26. Hua, C. Z., X. D. Wu, N. Yang, and W. Wu, "Millimeter-wave homogenous cylindrical lens antenna for multiple fan-beam scanning," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1922-1929, 2012.
doi:10.1080/09205071.2012.721181 Google Scholar
27. Kamchouchi, H. E. and G. Abouelseoud, "A novel approach to multiband- ultra-wideband millimeter wave antennas design based on repeated kernel array of microstrip patches (ReKAMP)," IEEE Int. Symp. Antennas Propagat. Soc., 246-249, 2005. Google Scholar
28. Kumar, A. and H. D. Hristov, Microwave Cavity Antennas, Artech House, Norwood, MA, 1989.
29. Li, R., D. Thompson, et al. "Development of a wide-band short backfire antenna excited by an unbalance-fed H-shaped slot," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 2, 662-671, Feb. 2005.
doi:10.1109/TAP.2004.841291 Google Scholar
30. Li, R., D. Thompson, et al. "A circularly polarized short backfire antenna excited by an unbalance-fed cross aperture," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 3, 852-859, Mar. 2006.
doi:10.1109/TAP.2006.869910 Google Scholar
31. Ou Yang, J., S. Bo, J. Zhang, and F. Yang, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
doi:10.2528/PIER11070503 Google Scholar
32. Wang, F. J. and J.-S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801 Google Scholar
33. Qu, S.-W., "Study on wideband cavity-backed bowtie antennas," Ph.D. Dissertation, The City University of Hong Kong, 2009. Google Scholar
34. Hua, C. Z., X. D. Wu, and W. Wu, "A cavity-backed aperture-coupled microstrip patch antenna array with sum/difference beams," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 7, 932-941, 2012.
doi:10.1080/09205071.2012.710381 Google Scholar
35. Grzyb, J., et al. "Wideband cavity-backed folded dipole superstrate antenna for 60 GHz applications," IEEE Int. Symp. Antennas Propagat. Soc., 3939-3942, 2006. Google Scholar
36. Qu, S.-W., et al. "Wideband cavity-backed bowtie antenna with pattern improvement," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 12, 3850-3854, Dec. 2008.
doi:10.1109/TAP.2008.2007395 Google Scholar
37. Qu, S.-W. and C.-L. Ruan, "Effect of round corners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006.
doi:10.2528/PIER05072103 Google Scholar
38. Qu, S.-W., et al. "Ultrawideband composite cavity-backed folded sectorial bowtie antenna with stable pattern and high gain ," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 8, 2478-2483, Aug. 2009.
doi:10.1109/TAP.2009.2024585 Google Scholar
39. Qu, S.-W., C. H. Chan, and Q. Xue, "Ultrawideband composite cavity-backed rounded triangular bowtie antenna with stable patterns," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 685-695, 2009.
doi:10.1163/156939309788019930 Google Scholar
40. Lee, J., et al. "A low-power low-cost fully integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly," IEEE J. Solid-State Circuits, Vol. 45, No. 2, 264-275, Feb. 2010.
doi:10.1109/JSSC.2009.2034806 Google Scholar