1. Fleischmann, M., P. J. Hendra, and A. Mcquilla, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., Vol. 26, 163-166, 1974.
doi:10.1016/0009-2614(74)85388-1 Google Scholar
2. Tian, Z. Q. and B. Ren, "Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy," Annu. Rev. Phys. Chem., Vol. 55, 197-229, 2004.
doi:10.1146/annurev.physchem.54.011002.103833 Google Scholar
3. Wustholz, K. L., C. L. Brosseau, F. Casadio, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy of dyes: From single molecules to the artists canvas," Physical Chemistry Chemical Physics, Vol. 11, 7350-7359, 2009.
doi:10.1039/b904733f Google Scholar
4. Stiles, P. L., F. A. Dieringer, N. C. Shah, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," Annu. Rev. Anal. Chem., Vol. 1, 601-626, 2008.
doi:10.1146/annurev.anchem.1.031207.112814 Google Scholar
5. Cao, Y. C., R. Jin, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science, Vol. 297, 1536-1540, 2002.
doi:10.1126/science.297.5586.1536 Google Scholar
6. Nie, S. and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science, Vol. 275, 1102-1106, 1997.
doi:10.1126/science.275.5303.1102 Google Scholar
7. Kneipp, K., Y. Wang, H. Kneipp, T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett., Vol. 78, 1667-1670, 1997.
doi:10.1103/PhysRevLett.78.1667 Google Scholar
8. Emel'yanov, V. and T. V. Koroteev, "Giant Raman scattering of light by molecules adsorbed on the surface of a metal," Sov. Phys. Usp., Vol. 24, 864-873, 1981.
doi:10.1070/PU1981v024n10ABEH004812 Google Scholar
9. Pustovit, V. N. and T. V. Shahbazyan, "Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles," Phys. Rev. B, Vol. 73, 085408, 2006.
doi:10.1103/PhysRevB.73.085408 Google Scholar
10. Kerker, M., D. S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: Errata," Appl. Opt., Vol. 19, 4159-4174, 1980.
doi:10.1364/AO.19.004159 Google Scholar
11. Gersten, J. and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys., Vol. 73, 3023-3037, 1980.
doi:10.1063/1.440560 Google Scholar
12. Schatz, G. C. and R. P. van Duyne, Electromagnetic mechanism of surface-enhanced spectroscopy, Handbook of Vibrational Spectroscopy, John Wiley and Sons, Ltd., 2006.
13. Xu, H. X., X. H. Wang, M. P. Persson, and H. Q. Xu, "Unified treatment of °uorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett., Vol. 93, 243002, 2004.
doi:10.1103/PhysRevLett.93.243002 Google Scholar
14. Yin, Y. D., L. Gao, and C. W. Qiu, "Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles," J. Phys. Chem. C, Vol. 115, 8893-8899, 2011.
doi:10.1021/jp111141b Google Scholar
15. Shalabney, A., C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, "Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing," J. Nanophoton., Vol. 6, No. 1, 061605, 2012.
doi:10.1117/1.JNP.6.061605 Google Scholar
16. Höfich, K., "Plasmonic dimer antennas for surface enhanced Raman scattering," Nanotechnology, Vol. 23, 185303, 2012.
doi:10.1088/0957-4484/23/18/185303 Google Scholar
17. Wang, X. T. and W. S. Shi, "Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures," Physical Chemistry Chemical Physics, Vol. 14, 5891-5901, 2012.
doi:10.1039/c2cp40080d Google Scholar
18. McMahon, J. M., S. K. Gray, and G. C. Schatz, "Nonlocal optical response of metal nanostructures with arbitrary shape," Phys. Rev. Lett., Vol. 103, 097403, 2009.
doi:10.1103/PhysRevLett.103.097403 Google Scholar
19. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in non-local media --- Negative group velocity and beyond," Progress In Electromagnetics Research B, Vol. 14, 149-174, 2009.
doi:10.2528/PIERB09031911 Google Scholar
20. Ruppin, R., "Optical properties of a plasma sphere," Phys. Rev. Lett., Vol. 31, 1434-1437, 1973.
doi:10.1103/PhysRevLett.31.1434 Google Scholar
21. Raza, S., M. Wubs, and N. A. Mortensen, "Unusual resonances in nanoplasmonic structures due to nonlocal response," Phys. Rev. B, Vol. 84, 121412, 2011.
doi:10.1103/PhysRevB.84.121412 Google Scholar
22. Dasgupta, B. B. and R. Fuchs, "Polarizability of a small sphere including nonlocal effects," Phys. Rev. B, Vol. 24, 554-561, 1981.
doi:10.1103/PhysRevB.24.554 Google Scholar
23. Leung, P. T. and W. S. Tse, "Nonlocal electrodynamic effect on the enhancement factor for surface enhanced Raman scattering," Solid State Commun., Vol. 95, 39-44, 1995.
doi:10.1016/0038-1098(95)00144-1 Google Scholar
24. Chang, R. and P. T. Leung, "Nonlocal effects on optical and molecular interactions with metallic nanoshells," Phys. Rev. B, Vol. 73, 125438, 2006.
doi:10.1103/PhysRevB.73.125438 Google Scholar
25. Xie, H. Y., H. Y. Chung, P. T. Leung, and D. P. Tsai, "Plasmonic enhancement of FÄorster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects," Phys. Rev. B, Vol. 80, 155448, 2009.
doi:10.1103/PhysRevB.80.155448 Google Scholar
26. Chung, H. Y., G. Y. Guo, H. P. Chiang, D. P. Tsai, and P. T. Leung, "Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation," Phys. Rev. B, Vol. 82, 165440, 2010.
doi:10.1103/PhysRevB.82.165440 Google Scholar
27. Bruzzone, S., M. Malvaldi, G. P. Arrighini, and C. Guidotti, "Near-field and far-field scattering by bimetallic nanoshell systems," J. Phys. Chem. B, Vol. 110, 11050-11054, 2006.
doi:10.1021/jp061668o Google Scholar
28. Wu, D. J., X. D. Xu, and X. J. Liu, "Electric field enhancement in bimetallic gold and silver nanoshells," Solid State Commun., Vol. 148, 163-167, 2008.
doi:10.1016/j.ssc.2008.07.030 Google Scholar
29. Rojas, R., F. Claro, and R. Fuchs, "Nonlocal response of a small coated sphere," Phys. Rev. B, Vol. 37, 6799-6807, 1988.
doi:10.1103/PhysRevB.37.6799 Google Scholar
30. Fan, C. Z., J. P. Huang, and K. W. Yu, "Dielectrophoresis of an inhomogeneous colloidal particle under an inhomogeneous field: A first-principles approach," J. Phys. Chem. B, Vol. 110, 25665-25670, 2006.
doi:10.1021/jp062397k Google Scholar
31. Westcott, S. L., J. B. Jackson, C. Radloff, and N. J. Halas, "Relative contributions to the plasmon line shape of metal nanoshells," Phys. Rev. B, Vol. 66, 155431, 2002.
doi:10.1103/PhysRevB.66.155431 Google Scholar
32. Steinbruck, A., A. Csaki, G. Festag, and W. Fritzsche, "Preparation and optical characterization of core-shell bimetal nanoparticles," Plasmonics, Vol. 1, 79, 2006.
doi:10.1007/s11468-005-9000-5 Google Scholar
33. Goude, Z. E. and P. T. Leung, "Surface enhanced Raman scattering from metallic nanoshells with nonlocal dielectric response," Solid State Commun., Vol. 143, 416-420, 2007.
doi:10.1016/j.ssc.2007.06.015 Google Scholar
34. Prodan, E., C. Radlo®, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, 2003.
doi:10.1126/science.1089171 Google Scholar
35. Li, B. Q. and C. H. Liu, "Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells," Opt. Lett., Vol. 36, 247-249, 2011.
doi:10.1364/OL.36.000247 Google Scholar
36. Colas des Francs, G., "Molecule non-radiative coupling to a metallic nanosphere: An optical theorem treatment," Int. J. Mol. Sci., Vol. 10, 3931-3936, 2009.
doi:10.3390/ijms10093931 Google Scholar
37. Pavan Kumar, G. V., S. Shruthi, B. Vibha, B. A. Ashok Prddy, T. K. Kundu, and C. Narayana, "Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules," J. Phys. Chem. C, Vol. 111, 4388-4392, 2007.
doi:10.1021/jp068253n Google Scholar
38. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett., Vol. 96, 113002, 2006.
doi:10.1103/PhysRevLett.96.113002 Google Scholar