1. Ogawa, H. and D. Polifko, "Fiber optic millimeter-wave subcarrier transmission links for personal radio communication systems," IEEE MTT-S International Microwave Symposium Digest, 555-558, 1992. Google Scholar
2. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012. Google Scholar
3. Choudhury, P. K. and W. K. Soon, "On the tapered optical fibers with radially anisotropic liquid crystal clad," Progress In Electromagnetics Research, Vol. 115, 461-475, 2011. Google Scholar
4. Huang, T. Y. and T. J. Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60 GHz wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011. Google Scholar
5. Choudhury, P. K., "Transmission through twisted clad liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 131, 169-184, 2012. Google Scholar
6. Sarrazin, T., H. Vettikalladi, O. Lafond, M. Himdi, and N. Rolland, "Low cost 60 GHz new thin Pyralux membrane antennas fed by substrate integrated waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012. Google Scholar
7. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetic Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105 Google Scholar
8. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012. Google Scholar
9. Harun, A., D. L. Ndzi, M. F. Ramli, A. Y. M. Shakaff, M. N. Ahmad, L. M. Kamarudin, A. Zakaria, and Y. Yang, "Signal propagation in aquaculture environment for wireless sensor network applications," Progress In Electromagnetics Research, Vol. 131, 477-494, 2012. Google Scholar
10. Alejos, A. V., M. Dawood, and L. Medina, "Experimental dynamical evolution of the Brillouin precursor for broadband wireless communication through vegetation," Progress In Electromagnetics Research, Vol. 111, 291-309, 2011.
doi:10.2528/PIER10100706 Google Scholar
11. Ndzi, D. L., M. A. M. Arif, A. Y. M. Shakaff, M. N. Ahmad, A. Harun, L. M. Kamarudin, A. Zakaria, M. F. Ramli, and M. S. Razalli, "Signal propagation analysis for low data rate wireless sensor network applications in sport grounds and on roads," Progress In Electromagnetics Research, Vol. 125, 1-19, 2012.
doi:10.2528/PIER11111406 Google Scholar
12. Lin, C. T., et al., "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photonics Technology Letters, Vol. 20, 1027-1029, 2008.
doi:10.1109/LPT.2008.923739 Google Scholar
13. Kotb, H. E., M. Y. Shalaby, and M. H. Ahmed, "Generation of nanosecond optical pulses with controlled repetition rate using incavity intensity modulated brillouin erbium fiber laser," Progress In Electromagnetics Research, Vol. 113, 313-331, 2011. Google Scholar
14. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012. Google Scholar
15. Jia, Z., et al., "Key enabling technologies for optical wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology, Vol. 25, 3452-3471, 2007.
doi:10.1109/JLT.2007.909201 Google Scholar
16. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012. Google Scholar
17. Kapilevich, B. , B. Litvak, "Noise versus coherency in mm-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011. Google Scholar
18. Yu, J., J., et al., "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photonics Technology Letters, Vol. 18, 265-267, 2006.
doi:10.1109/LPT.2005.862006 Google Scholar
19. Ma, J., et al., "Optical mm-wave generation by using external modulator based on optical carrier suppression," Optics Communications, Vol. 268, 51-57, 2006.
doi:10.1016/j.optcom.2006.07.012 Google Scholar
20. Zavargo-Peche, L., A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, "Fourier based combined techniques to design novel sub-wavelength optical integrated devices," Progress In Electromagnetics Research, Vol. 123, 447-465, 2012.
doi:10.2528/PIER11072907 Google Scholar
21. Qi, G., et al., "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 3090-3097, 2005.
doi:10.1109/TMTT.2005.855123 Google Scholar
22. Liu, J., L. Zhang, S.-H. Fan, C. Guo, S. He, and G.-K. Chang, "A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks," Progress In Electromagnetics Research, Vol. 126, 139-148, 2012.
doi:10.2528/PIER12012701 Google Scholar
23. Qi, G., et al., "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," Journal of Lightwave Technology, Vol. 23, 2687-2695, 2005.
doi:10.1109/JLT.2005.854067 Google Scholar
24. Wang, H., B. Yan, Z. Wang, and R.-M. Xu, "A broadband microwave gain equalizer," Progress In Electromagnetics Research Letters, Vol. 33, 63-72, 2012. Google Scholar
25. Ou, H., et al., "Microwave-photonic frequency doubling utilising phase modulator and fibre Bragg grating," Electronics Letters, Vol. 44, 131-133, 2008.
doi:10.1049/el:20083046 Google Scholar
26. Chen, L., et al., "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photonics Technology Letters, Vol. 18, 2056-2058, 2006.
doi:10.1109/LPT.2006.883293 Google Scholar
27. Zakeri, B. G., M. R. Zahabi, and S. Alighale, "Sidelobes level improvement by using a new scheme used in microwave pulse compression radars," Progress In Electromagnetics Research Letters, Vol. 30, 81-90, 2012.
doi:10.2528/PIERL12011102 Google Scholar
28. He, J., et al., "Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation," Optical Fiber Technology, Vol. 15, 290-295, 2009.
doi:10.1016/j.yofte.2008.12.006 Google Scholar
29. Yu, J., et al., "Centralized lightwave radio-over-fiber system with high-frequency optical millimeter-wave generation by low-frequency and low-bandwidth optical and electrical sources," IEEE International Topical Meeting on Microwave Photonics, 127-129, 2007. Google Scholar
30. Zhang, J., et al., "42.13 Gbit/s 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," IEEE Photonics Technology Letters, Vol. 19, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462 Google Scholar
31. Zhang, J., et al. "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photonics Technology Letters, Vol. 19, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462 Google Scholar
32. Lu, H. H., et al., "Radio-over-fiber transport systems based on dfb ld with main and -1 side modes injection-locked technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604 Google Scholar
33. Chen, et al., "A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators," Optics Communications, Vol. 284, 1159-1169, 2011.
doi:10.1016/j.optcom.2010.11.012 Google Scholar
34. Zhao, Y., et al., "Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators," Optics Letters, Vol. 34, 3250-3252, 2009.
doi:10.1364/OL.34.003250 Google Scholar
35. Liu, X., et al., "Frequency quadrupling using an integrated Mach-Zehnder modulator with four arms," Optics Communications, Vol. 284, 4052-4058, 2011.
doi:10.1016/j.optcom.2011.04.008 Google Scholar
36. Błahut, M. and A. Opilski, "Multimode interference structures - New way of passive elements technology for photonics," Opto-electronics Review, Vol. 9, 293-300, 2001. Google Scholar
37. Ma, J., et al., "Fiber dispersion influence on transmission of ," Journal of Lightwave Technology, Vol. 25, 3244-3256, 2007.
doi:10.1109/JLT.2007.907794 Google Scholar