1. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propag. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128 Google Scholar
2. Chew, W. C., J. M. Jin, E. Michielssen, and J. Song, Fast Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.
3. Yuan, N., T. S. Yeo, X. C. Nie, L. W. Li, and Y. B. Gan, "Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithm," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 499-515, 2003.
doi:10.1163/156939303767869026 Google Scholar
4. Garcia, E., C. Delgado, L. Lozano, I. Gonzalez-Diego, and M. F. Catedra, "An efficient hybrid-scheme combining the characteristic basis function method and the multilevel fast multipole algorithm for solving bistatic RCS and radiation problems," Progress In Electromagnetics Research B, Vol. 34, 327-343, 2011. Google Scholar
5. Lai, B., H. B. Yuan, and C.-H. Liang, "Analysis of nurbs surfaces modeled geometries with higher-order mom based AIM," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 683-691, 2011.
doi:10.1163/156939311794827285 Google Scholar
6. Pan, X.-M., W.-C. Pi, and X.-Q. Sheng, "On openmp parallelization of the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 112, 199-213, 2011. Google Scholar
7. Shao, H., H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011. Google Scholar
8. Ergul, O., "Parallel implementation of MLFMA for homogeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2011.
doi:10.2528/PIER11092501 Google Scholar
9. Pan, X. M., W. C. Pi, M. L. Yang, Z. Peng, and X. Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2012.
doi:10.1109/TAP.2012.2189746 Google Scholar
10. Schobert, D. T. and T. F. Eibert, "Fast integral equation solution by multilevel Green's function interpolation combined with multilevel fast multipole method," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4458-4463, 2012.
doi:10.1109/TAP.2012.2210291 Google Scholar
11. Wulf, D. and R. Bunger, "An efficient implementation of the combined wideband MLFMA/LF-FIPWA," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 467-474, 2009.
doi:10.1109/TAP.2008.2011176 Google Scholar
12. Bogaert, I., J. Peeters, and F. Olyslager, "A nondirective plane wave MLFMA stable at low frequencies," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3752-3767, 2008.
doi:10.1109/TAP.2008.2007356 Google Scholar
13. Pan, X. M., J. G.Wei, Z. Peng, and X. Q. Sheng, "A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm," Radio Sci., Vol. 47, 2012. Google Scholar
14. Greengard, L., D. Guey±er, P. G. Martinsson, and V. Rokhlin, "Fast direct solvers for integral equations in complex three-dimensional domains," Acta Numerica, Vol. 18, 243-275, 2009.
doi:10.1017/S0962492906410011 Google Scholar
15. Ho, K. L. and L. Greengard, "A fast direct solver for structured linear systems by recursive skeletonization," SIAM J. Sci. Comput., Vol. 34, No. 5, A2507-A2532, 2012.
doi:10.1137/120866683 Google Scholar
16. Rodriguez, J. L., J. M. Taboada, M. G. Araujo, F. O. Basteiro, L. Landesa, and I. Garcia-Tunon, "On the use of the singular value decomposition in the fast multipole method," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2325-2334, 2008.
doi:10.1109/TAP.2008.926761 Google Scholar
17. Liberty, E., F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, "Randomized algorithms for the low-rank approximation of matrices," Proc. Natl. Acad. Sci., Vol. 104, 20167-20172, US, 2007.
doi:10.1073/pnas.0709640104 Google Scholar