Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-14
Synthesis of Large Planar Thinned Arrays Using IWO-IFT Algorithm
By
Progress In Electromagnetics Research, Vol. 136, 29-42, 2013
Abstract
The iterative Fourier technique (IFT) is a high efficiency method that was proposed in recent past for the synthesis of large planar thinned arrays with isotropic radiating elements. However, the selection mechanism of IFT cannot always include the most useful elements in the "turned ON" families, which make the method trap in some local minima. Therefore, in this paper, inspired by invasive weed optimization (IWO) algorithm, a developed version of the iterative Fourier technique (IFT), IWO-IFT, is proposed for thinning large planar arrays. In this new method, the initial weeds are produced by IFT, and are further perturbed by IWO through repeatedly reproduction, dispersion, and exclusion over search space to find better weeds. Numerical results for synthesizing different circular thinned arrays demonstrated the superiority of IWO-IFT over the IFT method.
Citation
Xin-Kuan Wang, Yong-Chang Jiao, Yan Liu, and Yan Yan Tan, "Synthesis of Large Planar Thinned Arrays Using IWO-IFT Algorithm," Progress In Electromagnetics Research, Vol. 136, 29-42, 2013.
doi:10.2528/PIER12102001
References

1. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. on Antennas and Propag., Vol. 42, 993-999, 1994.
doi:10.1109/8.299602

2. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER10010104

3. Fernández-Delgado, M., J. A. Rodríguez-Gonz'alez, R. Iglesias, S. Barro, and F. J. Ares-Pena, "Fast array thinning using global optimization methods," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 6, 2259-2271, 2010.
doi:10.1163/156939310793699136

4. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

5. Wang, W.-B., Q. Feng, and D. Liu, "Synthesis of thinned linear and planar antenna arrays using binary PSO algorithm," Progress In Electromagnetics Research, Vol. 127, 371-387, 2012.
doi:10.2528/PIER12020301

6. Quevedo-Teruel, Ó and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 349-352, 2006.
doi:10.1109/LAWP.2006.880693

7. Zhang, L., Y.-C. Jiao, B. Chen, and F.-S. Zhang, "Synthesis of linear aperiodic arrays using a self-adaptive hybrid differential evolution algorithm," IET Microw. Antennas Propag., Vol. 5, 1524-1528, 2011.
doi:10.1049/iet-map.2010.0429

8. Ghosh, P. and S. Das, "Synthesis of thinned planar concentric circular antenna arrays --- A differential evolutionary approach," Progress In Electromagnetics Research B, Vol. 29, 63-82, 2011.
doi:10.2528/PIERB11020204

9. Mandal, A., H. Zafar, S. Das, and A. V. Vasilakos, "Efficient circular array synthesis with a memetic differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 38, 367-385, 2012.

10. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. on Antennas and Propag., Vol. 56, 2757-2760, 2008.
doi:10.1109/TAP.2008.927580

11. Keizer, W. P. M. N., "Large planar array thinning using iterative FFT techniques," IEEE Trans. on Antennas and Propag., Vol. 57, 3359-3362, 2009.
doi:10.1109/TAP.2009.2029382

12. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003

13. Dadalipour, B., A. R. Mallahzadeh, and Z. Davoodi-Rad, "Application of the invasive weed optimization technique for antenna configurations," IEEE Antennas and Propagation Conference, 425-428, Loughborough, March 2008.

14. Mallahzadeh, A. R., S. Es'haghi, and H. R. Hassani, "Compact U-array MIMO antenna designs using IWO algorithm," International Journal of RF and Microwave Computer-aided Engineering, 568-576, 2009.
doi:10.1002/mmce.20379

15. Sedighy, S. H., A. R. Mallahzadeh, M. Soleimani, and J. Rashed-Mohassel, "Optimization of printed Yagi antenna using invasive weed optimization (IWO)," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1275-12758, 2010.
doi:10.1109/LAWP.2011.2105458

16. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

17. Monavar, F. M., N. Komjani, and P. Mousavi, "Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1369-1372, 2011.
doi:10.1109/LAWP.2011.2177801

18. Roshanaei, M., C. Lucas, and A. R. Mehrabian, "Adaptive beamforming using a novel numerical optimization algorithm," IET Microw. Antennas Propag.,, Vol. 3, 765-773, 2009.
doi:10.1049/iet-map.2008.0188

19. Pal, S., A. Basak, S. Das, and A. Abraham, "Linear antenna array synthesis with invasive weed optimization algorithm," IEEE International Conference of Soft Computing and Pattern Recognition, 161-166, 2009.

20. Karimkashi, S. and A. A. Kishk, "Invasive weed optimization and its features in electromagnetics," IEEE Trans. on Antennas and Propag., Vol. 58, 1269-1278, 2010.
doi:10.1109/TAP.2010.2041163

21. Basak, A., S. Pal, S. Das, A. Abraham, and V. Snasel, "A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis," IEEE Congress on Evolutionary Computation, 1-8, 2010.
doi:10.1109/CEC.2010.5586276

22. Roy, G. G., S. Das, P. Chakraborty, and P. N. Suganthan, "Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Trans. on Antennas and Propag., Vol. 59, 110-118, 2011.
doi:10.1109/TAP.2010.2090477

23. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beam-forming with low side lobe level using a novel adaptive invasive weed optimization method," Progress In Electromagnetics Research, Vol. 124, 137-150, 2012.
doi:10.2528/PIER11120202

24. Keizer, W. P. M. N., "Amplitude-only low sidelobe synthesis for large thinned circular array antennas," IEEE Trans. on Antennas and Propag., Vol. 60, 1157-1161, 2012.
doi:10.1109/TAP.2011.2173119