1. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. on Antennas and Propag., Vol. 42, 993-999, 1994.
doi:10.1109/8.299602 Google Scholar
2. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER10010104 Google Scholar
3. Fernández-Delgado, M., J. A. Rodríguez-Gonz'alez, R. Iglesias, S. Barro, and F. J. Ares-Pena, "Fast array thinning using global optimization methods," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 6, 2259-2271, 2010.
doi:10.1163/156939310793699136 Google Scholar
4. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304 Google Scholar
5. Wang, W.-B., Q. Feng, and D. Liu, "Synthesis of thinned linear and planar antenna arrays using binary PSO algorithm," Progress In Electromagnetics Research, Vol. 127, 371-387, 2012.
doi:10.2528/PIER12020301 Google Scholar
6. Quevedo-Teruel, Ó and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 349-352, 2006.
doi:10.1109/LAWP.2006.880693 Google Scholar
7. Zhang, L., Y.-C. Jiao, B. Chen, and F.-S. Zhang, "Synthesis of linear aperiodic arrays using a self-adaptive hybrid differential evolution algorithm," IET Microw. Antennas Propag., Vol. 5, 1524-1528, 2011.
doi:10.1049/iet-map.2010.0429 Google Scholar
8. Ghosh, P. and S. Das, "Synthesis of thinned planar concentric circular antenna arrays --- A differential evolutionary approach," Progress In Electromagnetics Research B, Vol. 29, 63-82, 2011.
doi:10.2528/PIERB11020204 Google Scholar
9. Mandal, A., H. Zafar, S. Das, and A. V. Vasilakos, "Efficient circular array synthesis with a memetic differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 38, 367-385, 2012. Google Scholar
10. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. on Antennas and Propag., Vol. 56, 2757-2760, 2008.
doi:10.1109/TAP.2008.927580 Google Scholar
11. Keizer, W. P. M. N., "Large planar array thinning using iterative FFT techniques," IEEE Trans. on Antennas and Propag., Vol. 57, 3359-3362, 2009.
doi:10.1109/TAP.2009.2029382 Google Scholar
12. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003 Google Scholar
13. Dadalipour, B., A. R. Mallahzadeh, and Z. Davoodi-Rad, "Application of the invasive weed optimization technique for antenna configurations," IEEE Antennas and Propagation Conference, 425-428, Loughborough, March 2008.
14. Mallahzadeh, A. R., S. Es'haghi, and H. R. Hassani, "Compact U-array MIMO antenna designs using IWO algorithm," International Journal of RF and Microwave Computer-aided Engineering, 568-576, 2009.
doi:10.1002/mmce.20379 Google Scholar
15. Sedighy, S. H., A. R. Mallahzadeh, M. Soleimani, and J. Rashed-Mohassel, "Optimization of printed Yagi antenna using invasive weed optimization (IWO)," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1275-12758, 2010.
doi:10.1109/LAWP.2011.2105458 Google Scholar
16. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305 Google Scholar
17. Monavar, F. M., N. Komjani, and P. Mousavi, "Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1369-1372, 2011.
doi:10.1109/LAWP.2011.2177801 Google Scholar
18. Roshanaei, M., C. Lucas, and A. R. Mehrabian, "Adaptive beamforming using a novel numerical optimization algorithm," IET Microw. Antennas Propag.,, Vol. 3, 765-773, 2009.
doi:10.1049/iet-map.2008.0188 Google Scholar
19. Pal, S., A. Basak, S. Das, and A. Abraham, "Linear antenna array synthesis with invasive weed optimization algorithm," IEEE International Conference of Soft Computing and Pattern Recognition, 161-166, 2009. Google Scholar
20. Karimkashi, S. and A. A. Kishk, "Invasive weed optimization and its features in electromagnetics," IEEE Trans. on Antennas and Propag., Vol. 58, 1269-1278, 2010.
doi:10.1109/TAP.2010.2041163 Google Scholar
21. Basak, A., S. Pal, S. Das, A. Abraham, and V. Snasel, "A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis," IEEE Congress on Evolutionary Computation, 1-8, 2010.
doi:10.1109/CEC.2010.5586276 Google Scholar
22. Roy, G. G., S. Das, P. Chakraborty, and P. N. Suganthan, "Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Trans. on Antennas and Propag., Vol. 59, 110-118, 2011.
doi:10.1109/TAP.2010.2090477 Google Scholar
23. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beam-forming with low side lobe level using a novel adaptive invasive weed optimization method," Progress In Electromagnetics Research, Vol. 124, 137-150, 2012.
doi:10.2528/PIER11120202 Google Scholar
24. Keizer, W. P. M. N., "Amplitude-only low sidelobe synthesis for large thinned circular array antennas," IEEE Trans. on Antennas and Propag., Vol. 60, 1157-1161, 2012.
doi:10.1109/TAP.2011.2173119 Google Scholar