Vol. 134
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-06
Luminescence Enhancement of Oled Performance by Doping Colloidal Magnetic FE3O4 Nanoparticles
By
Progress In Electromagnetics Research, Vol. 134, 509-524, 2013
Abstract
We report synthesis of magnetic Fe3O4 nanoparticles (MNPs) based on two phase method and their application in organic light-emitting devices (OLEDs) as blend with emissive Polyfluorene (PFO) matrix. Two phase method allows to successively synthesizing oleic acid capped MPNs with 5-10 nm particle size. Colloidal MNPs can be easily mixed with emissive polymer solutions to obtain a blend for OLED application. The electroluminescence efficiency increases by doping with MNPs into emissive layer. Different dopant concentrations varied from 0.4% to 2% were monitored. It was observed that the electroluminescence increases up to 1% v/v doping ratio. The luminance of OLEDs increased from 15.000 cd/m² to 24.000 cd/m² in comparison pristine device with 1% MNP doped device.
Citation
Mahmut Kus, Faruk Ozel, Nurhan Mehmet Varal, and Mustafa Ersoz, "Luminescence Enhancement of Oled Performance by Doping Colloidal Magnetic FE3O4 Nanoparticles," Progress In Electromagnetics Research, Vol. 134, 509-524, 2013.
doi:10.2528/PIER12103106
References

1. Li, , Y., A. Rizzo, R. Cingolani, and G. Gigli, "Bright white-light-emitting device from ternary nanocrystal composites," Advanced Materials,, Vol. 18, No. 19, 2545-2548, 2006.
doi:10.1002/adma.200600181        Google Scholar

2. Haque, S., S. Koops, N. Tokmoldin, J. Durrant, J. Huang, D. Bradley, and E. Palomares, "A multilayered polymer light-emitting diode using a nanocrystalline metal-oxide film as a charge-injection electrode," Advanced Materials, Vol. 19, No. 5, 683-687, 2007.
doi:10.1002/adma.200601619        Google Scholar

3. Taberna, P. L., S. Mitra, P. Poizot, P. Simon, and J.-M. Tarascon, "High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications," Nat. Mater., Vol. 5, 567-573, 2006.
doi:10.1038/nmat1672        Google Scholar

4. Xu, , Z., C. Shen, Y. Hou, H. Gao, and S. Sun, "Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles," Chemistry of Materials, Vol. 21, 1778-1780, 2009.
doi:10.1021/cm802978z        Google Scholar

5. Zeng, , H. and S. Sun, "Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles," Advanced Functional Materials, Vol. 18, No. 3, 391-400, 2008.
doi:10.1002/adfm.200701211        Google Scholar

6. Shi, , R., X. Liu, G. Gao, R. Yi, and G. Qiu, "Large-scale synthesis and characterization of monodisperse Fe3O4 nanocrystals," Journal of Alloys and Compounds,, Vol. 485, 548-553, 2009.
doi:10.1016/j.jallcom.2009.06.024        Google Scholar

7. Zhang, , L., R. He, and H.-C. Gu, "Oleic acid coating on the monodisperse magnetite nanoparticles," Applied Surface Science,, Vol. 253, 2611-2617, 2006.
doi:10.1016/j.apsusc.2006.05.023        Google Scholar

8. Bronstein, , L. M., X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of iron oleate complex structure on iron oxide nanoparticle formation," Chemistry of Materials,, Vol. 19, No. 15, 3624-3632, 2007.
doi:10.1021/cm062948j        Google Scholar

9. Sun, J., S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, and M. Li, "Synthesis and characterization of biocompatible Fe3O4 nanoparticles," Journal of Biomedical Materials Research A,, Vol. 80, No. 2, 333-341, 2007.
doi:10.1002/jbm.a.30909        Google Scholar

10. Mai Hoa , , L. T., T. T. Dung, T. M. Danh, N. H. Duc, and D. M. Chien, "Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol ," Journal of Physics: Conference Series,, Vol. 187, 12048, 2009.        Google Scholar

11. Xuan, , S., L. Hao, W. Jiang, X. Gong, Y. Hu, and Z. Chen, "Preparation of water-soluble magnetite nanocrystals through hydrothermal approach," Journal of Magnetism and Magnetic Materials, Vol. Material, 210-213, 2007.
doi:10.1016/j.jmmm.2006.05.017        Google Scholar

12. Lartigue, L., K. Oumzil, Y. Guari, J. Larionova, C. Guerin, J.-L. Montero, V. Barragan-Montero, C. Sangregorio, A. Caneschi, C. Innocenti, and T., "Water- soluble rhamnose-coated Fe3O4 nanoparticles," Organic Letters,, Vol. 11, No. 14, 2992-2995, 2009.
doi:10.1021/ol900949y        Google Scholar

13. Pan, , D., S. Jiang, L. An, and B. Jiang, "Controllable synthesis of highly luminescent and monodisperse CdS nanocrystals by a two-phase approach under mild conditions ," Advanced Materials,, Vol. 16, No. 12, 982-985, 2004.
doi:10.1002/adma.200400010        Google Scholar

14. Dallas, , P., A. Bourlinos, D. Niarchos, and D. Petridis, "Synthesis of tunable sized capped magnetic iron oxide nanoparticles highly soluble in organic solvents," Journal of Materials Science, Vol. 42, 4996-5002, 2007.
doi:10.1007/s10853-006-0610-x        Google Scholar

15. Hui, , C., C. Shen, T. Yang, L. Bao, J. Tian, H. Ding, C. Li, and H.-J. Gao, "Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method ," The Journal of Physical Chemistry C,, Vol. Chemistr, 11336-11339, 2008.
doi:10.1021/jp801632p        Google Scholar

16. Kalinowski, , J., M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, "Magnetic field effects on emission and current in Alq3-based Magnetic ¯eld e®ects on emission and current in Alq3-based," Chemical Physics Letters,, Vol. 380, No. 5, 710-715, 2003.
doi:10.1016/j.cplett.2003.09.086        Google Scholar

17. Gomez, J. A., F. NÄuesch, L. Zuppiroli, and C. F. O. Grae®, "Magnetic field effects on the conductivity of organic bipolar and unipolar devices at room temperature," Synthetic Metals, Vol. 160, No. 3--4, 317-319, 2010.
doi:10.1016/j.synthmet.2009.11.020        Google Scholar

18. Nguyen, T. D., Y. Sheng, J. Rybicki, G. Veeraraghavan, and M. Wohlgenannt, "Magnetoresistance in pi-conjugated organic sandwich devices with varying hyperfie and spin-orbit coupling strengths, and varying dopant concentrations," Journal of Materials Chemistry, Vol. 17, 1995-2001, 2007.
doi:10.1039/b617541d        Google Scholar

19. Ding, , B. F., Y. Yao, Z. Y. Sun, C. Q. Wu, X. D. Gao, Z. J. Wang, X. M. Ding, W. C. H. Choy, and X. Y. Hou, "Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility," Applied Physics Letters, Vol. 97, 163302-163304, 2010.
doi:10.1063/1.3505343        Google Scholar

20. Shimada, T., Organic Light Emitting Diode --- Material, Process, and Devices, 311-322, InTech, , 2011.

21. Ohmori, Y., H. Kajii, T. Sawatani, H. Ueta, and K. Yoshino, "Enhancement of electroluminescence utilizing confined energy transfer for red light emission Autore," Thin Solid Films, Vol. 393, 407-411, 2001.
doi:10.1016/S0040-6090(01)01128-2        Google Scholar

22. Zhang, , D.-D., J. Feng, Y.-F. Liu, Y.-Q. Zhong, Y. Bai, Y. Jin, G.-H. Xie, Q. Xue, Y. Zhao, S.-Y. Liu, and H.-B. Sun, "Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer," Applied Physics Letters,, Vol. 94, 223303-223306, 2009.        Google Scholar

23. Scherf, , U., E. J. W. List, and , "Semiconducting polyfluorenes- towards reliable structureCproperty relationships," Advanced Materials,, Vol. 14, No. 7, 477-487, 2002.
doi:10.1002/1521-4095(20020404)14:7<477::AID-ADMA477>3.0.CO;2-9        Google Scholar

24. Neher, , D., , "Polyfluorene homopolymers: Conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence," Macromolecular Rapid Communications, Vol. 22, No. 17, 1365-1385, 2001.
doi:10.1002/1521-3927(20011101)22:17<1365::AID-MARC1365>3.0.CO;2-B        Google Scholar

25. Yu, , W.-L., J. Pei, W. Huang, and A. J. Heeger, "Spiro-functionalized polyfluorene derivatives as blue light-emitting materials," Advanced Materials,, Vol. 12, No. 11, 828-831, 2000.
doi:10.1002/(SICI)1521-4095(200006)12:11<828::AID-ADMA828>3.0.CO;2-H        Google Scholar

26. Grell, , M., D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, "A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications," Advanced Materials, Vol. 9, No. 10, 798-802, 1997.
doi:10.1002/adma.19970091006        Google Scholar

27. Pei, , Q. and Y. Yang, "Effcient photoluminescence and electroluminescence from a soluble polyfluorene," Journal of the American Chemical Society, Vol. 118, 7416-7417, 1996.
doi:10.1021/ja9615233        Google Scholar

28. Rathnayake, , H., A. Cirpan, Z. Delen, P. Lahti, and F. Karasz, "Optimizing OLED e±cacy of 2,7-diconjugated 9,9- dialkyl°uorenes by variation of periphery substitution and conjugation length," Advanced Functional Materials, Vol. 17, 115-122, 2007.
doi:10.1002/adfm.200600089        Google Scholar

29. Craig, , M. R., M. M. de Kok, J. W. Hofstraat, A. P. H. J. Schenning, and E. W. Meijer, "Improving color purity and stability in a blue emitting poly°uorene by monomer purification," Journal of Materials Chemistry,, Vol. 13, 2861-2862, 2003.
doi:10.1039/b308402g        Google Scholar

30. Jenekhe, , S. A., J. A. Osaheni, and , "Excimers and exciplexes of conjugated polymers," Science,, Vol. 265, 765-768, 1994.
doi:10.1126/science.265.5173.765        Google Scholar

31. Gong, , X., P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, and S. S. Xiao, "Stabilized blue emission from polyfluorene based light-emitting diodes: Elimination of fluorenone defects," Advanced Functional Materials, , Vol. 13, 325-330, 2003.
doi:10.1002/adfm.200304279        Google Scholar

32. Becker, K., J. Lupton, J. Feldmann, B. Nehls, F. Galbrecht, D. Gao, and U. Scherf, "On-chain fluorenone defect emission from single poly°uorene molecules in the absence of intermolecular interactions," Advanced Functional Materials, Vol. 16, 364-370, 2006..
doi:10.1002/adfm.200500550        Google Scholar

33. Niedermeir, , U., "Magnetic field effect in organic light emitting diodes," Ph.D. Thesis, Technishe Universitat Darmstadt, 2010.        Google Scholar

34. Francis, , T. L., O. Mermer, G. Veeraraghavan, and M. Wohlgenannt, "Large magnetoresistance at room temperature in semiconducting polymer sandwich devices," New Journal of Physics, Vol. 6, 185, 2004.
doi:10.1088/1367-2630/6/1/185        Google Scholar

35. Itskos, , G., E. Harbord, S. K. Clowes, E. Clarke, L. F. Cohen, R. Murray, P. Van Dorpe, and W. Van Roy, "Oblique Hanle measurements of InAs/GaAs quantum dot spin-light emitting diodes," Applied Physics Letters,, Vol. 88, 22113-22114, 2006.
doi:10.1063/1.2163074        Google Scholar

36. Sun, , C.-J., Y. Wu, Z. Xu, B. Hu, J. Bai, J.-P. Wang, and J. Shen, "Enhancement of quantum e±ciency of organic light emitting devices by doping magnetic nanoparticles ," Applied Physics Letters,, Vol. 90, 232110-232113, 2007.
doi:10.1063/1.2746415        Google Scholar

37. Kumar, , P., H. Kumar, S. Chand, S. C. Jain, V. Kumar, V. Kumar, R. P. Pant, and R. P. Tandon, "Effect of CoFe magnetic nanoparticles on the hole transport in poly (2-methoxy, 5-(2-ethylhexiloxy) 1,4-phenylenevin," Journal of Physics D: Applied Physics, Vol. 41, 185104, 2008.
doi:10.1088/0022-3727/41/18/185104        Google Scholar

38. Zhang, , W., Y. Xu, H. Wang, C. Xu, and S. Yang, "Fe3O4 nanoparticles induced magnetic field effect on effciency enhancement of P3HT: PCBM bulk heterojunction polymer solar cells," Solar Energy Materials and Solar Cells, Vol. 95, 2880-2885, 2011.
doi:10.1016/j.solmat.2011.06.005        Google Scholar

39. Lee, , J., T. Isobe, and M. Senna, "Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH," Journal of Colloid and Interface Science, Vol. 177, 490-494, 1996.
doi:10.1006/jcis.1996.0062        Google Scholar

40. Zhou, , Z. H., J. Wang, X. Liu, and H. S. O. Chan, "Synthesis of Fe3O4 nanoparticles from emulsions," Journal of Materials Chemistry, Vol. Chemistr, 1704-1709, 2001.
doi:10.1039/b100758k        Google Scholar

41. Si, S., A. Kotal, T. K. Mandal, S. Giri, H. Nakamura, and T. Kohara, "Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes," Chemistry of Materials,, Vol. 16, 3489-3496, 2004.
doi:10.1021/cm049205n        Google Scholar

42. Scherrer, , P., , "Gottinger Nachrichten," Gesell,, Vol. 2, , 98, , 1918.        Google Scholar

43. Koseoglu, , Y., , "Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles: ESR study," Journal of Magnetism and Magnetic Materials, Vol. 300, e327-e330, 2006.
doi:10.1016/j.jmmm.2005.10.112        Google Scholar

44. Leo, , G., Y. Chushkin, S. Luby, E. Majkova, I. Kostic, M. Ulmeanu, A. Luches, M. Giersig, and M. Hilgendorff, "Ordering of free-standing Co nanoparticles," Materials Science and Engineering: C,, Vol. 23, 949-952, 2003.
doi:10.1016/j.msec.2003.09.099        Google Scholar

45. Friend, , R. H., R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, and M. Logdlu, "Electroluminescence in conjugated polymers," Nature,, Vol. 397, 121-128, 1999.
doi:10.1038/16393        Google Scholar

46. Chen, , C.-H. and H.-F. Meng, "Enhancement of singlet exciton formation ratio in electroluminescent conjugated polymers by magnetic doping," Physical Review B,, Vol. 68, 1-9, 2003.        Google Scholar