1. Novotny, L. and N. van Hulst, "Antennas for light," Nat. Photonics, Vol. 5, 83-90, 2011.
doi:10.1038/nphoton.2010.237 Google Scholar
2. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
3. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surface as a bridge linking propagating waves and surface waves," Nat. Materials, Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292 Google Scholar
4. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, 3537-3544, 2012.
doi:10.1021/nn300565x Google Scholar
5. Aouani, H., M. Navarro-Cia, M. Rahmani, T. Sidiropoulos, M. Hong, R. Oulton, and S. A. Maier, "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.
doi:10.1021/nl302665m Google Scholar
6. Schuller, J. A., T. Taubner, and M. L. Brongersma, "Optical antenna thermal emitters," Nat. Photonics, Vol. 18, 658-661, 2009.
doi:10.1038/nphoton.2009.188 Google Scholar
7. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozeh Kanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
doi:10.2528/PIER07081201 Google Scholar
8. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetics Research, Vol. 130, 429-446, 2012. Google Scholar
9. Cao, L., J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, "Resonant germanium nanoantenna photodetectors," Nano Lett., Vol. 10, 1229-1233, 2010.
doi:10.1021/nl9037278 Google Scholar
10. Gao, H., K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.
doi:10.2528/PIER09111607 Google Scholar
11. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint, and Jr., "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting ," Nano Lett., Vol. 12, 796-801, 2012.
doi:10.1021/nl203811q Google Scholar
12. Pan, L., Y. Park, E. Ulin-Avila, S. Xiong, D. B. Bogy, and X. Zhang, "Maskless plasmonic lithography at 22nm resolution," Scientific Reports, Vol. 1, Article No. 175, 2011, DOI: 10.1038/srep00175. Google Scholar
13. Wang, H., L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. C. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.
doi:10.1063/1.2364693 Google Scholar
14. Ashkin, A., J. M. Dziedzic, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., Vol. 11, 288, 1986.
doi:10.1364/OL.11.000288 Google Scholar
15. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin Heidelberg, New York, 1988.
16. Wang, H., et al. "Fighting against diffraction: Apodization and near field diffraction structures," Laser Photonics Rev., 1-39, 2011. Google Scholar
17. Wang, H., C. T. Chong, and L. Shi, "Optical antennas and their potential applications to 10Terabit/in2 recording," IEEE: Optical Data Storage Meeting, 16-18, 2009. Google Scholar
18. Novotny, L. and B. Hecht, Principle of Nano-optics,, Cambridge University Press, 2006.
19. Chu, S., et al. "Cooling and trapping of neutral atoms," Phys. Rev. Lett., Vol. 57, 314, 1986.
doi:10.1103/PhysRevLett.57.314 Google Scholar
20. Ashkin, A., J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature, Vol. 330, 769, 1987.
doi:10.1038/330769a0 Google Scholar
21. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, 1517, 1987.
doi:10.1126/science.3547653 Google Scholar
22. Yang, A. H. J., M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71, 2009.
doi:10.1038/nature07593 Google Scholar
23. Lumerical Solutions, Inc., http://www.lumerical.com.
24. Lumerical Solutions, Inc., http://www.lumerical.com/solutions/in-novation/fdtd multicoe±cient material modeling.html. Google Scholar
25. Terris, B. D., H. J. Mamin, and D. Rugar, "Nearfield optical data storage," Appl. Phys. Lett., Vol. 68, 141, 1996.
doi:10.1063/1.116127 Google Scholar
26. Leen, J. B., P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, "Near-field optical data storage using C-apertures," Appl. Phys. Lett., Vol. 97, 073111, 2010.
doi:10.1063/1.3474801 Google Scholar
27. Da Costa, K. Q. and V. A. Dmitriev, "Bowtie nanoantennas with polynomial sides in the excitation and emission regimes," Progress In Electromagnetics Research B, Vol. 32, 57-73, 2011.
doi:10.2528/PIERB11032808 Google Scholar
28. Kessentini, S. and D. Barchiesi, "Effect of gap shape on the spectral response and field enhancement of dimer-based biosensor," PIERS Proceedings, 24-28, Moscow, Russia, Aug. 19-23, 2012. Google Scholar
29. Yang, X., et al. "Optical force in hybrid plasmonic waveguides," Nano Lett., Vol. 11, 321-328, 2011.
doi:10.1021/nl103070n Google Scholar
30. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012. Google Scholar
31. Ordal, M. A., et al. "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., Vol. 22, 1099-1117, 1983.
doi:10.1364/AO.22.001099 Google Scholar