Vol. 136
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-20
Design Optimization and Analysis of AFPM Synchronous Machine Incorporating Power Density, Thermal Analysis, and Back-EMF THD
By
Progress In Electromagnetics Research, Vol. 136, 327-367, 2013
Abstract
This paper presents the design and analysis of an inside-out axial-flux permanent-magnet (AFPM) synchronous machine optimized by genetic algorithm (GA) based sizing equation, finite element analysis (FEA) and finite volume analysis (FVA). The preliminary design is a 2-pole-pair slotted TORUS AFPM machine. The designed motor comprises sinusoidal back-EMF waveforms, maximum power density and the best heat removal. The GA is used to optimize the dimensions of the machine in order to achieve the highest power density. Electromagnetic field analysis of the candidate machines from GA with various dimensions is then put through FEA in order to obtain various motor characteristics. Based on the results from GA and FEA, new candidates are introduced and then put through FVA for thermal behavior evaluation of the designed motors. Techniques like modifying the winding configuration and skewing the permanent magnets are also investigated to attain the most sinusoidal back-EMF waveform and reduced cogging torque. The performance of the designed 1 kW, 3-phase, 50 Hz, 4-pole AFPM synchronous machine is tested in simulation using FEA software. It is found that the simulation results fully agree with the designed technical specifications. It is also found from FVA results that the motor temperature reaches at highest temperature to 90°C at the rated speed and full load under steady state condition.
Citation
Solmaz Kahourzade, Amin Mahmoudi, Ali Gandomkar, Nasrudin Abd Rahim, Hew Wooi Ping, and Mohammad Nasir Uddin, "Design Optimization and Analysis of AFPM Synchronous Machine Incorporating Power Density, Thermal Analysis, and Back-EMF THD," Progress In Electromagnetics Research, Vol. 136, 327-367, 2013.
doi:10.2528/PIER12120204
References

1. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.        Google Scholar

2. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405        Google Scholar

3. Nguyen, Q. D. and S. Ueno, "Analysis and control of nonsalient permanent magnet axial gap self-bearing motor," IEEE Tran. on Ind. Electron., Vol. 58, No. 7, 2644-2652, Jul. 201.
doi:10.1109/TIE.2010.2076309        Google Scholar

4. Aydin, M., S. Huang, and T. A. Lipo, "Design, analysis, and control of a hybrid field-controlled axial-flux permanent-magnet motor," IEEE Trans. on Ind. Electron., Vol. 57, No. 1, 78-87.
doi:10.1109/TIE.2009.2028294        Google Scholar

5. Kano, Y., T. Kosaka, and N. Matsui, "A simple nonlinear magnetic analysis for axial-flux permanent-magnet machines," IEEE Tran. on Ind. Electron., Vol. 57, No. 6, 2124-2133, Jun. 2010.
doi:10.1109/TIE.2009.2034685        Google Scholar

6. Fei, W., P. C. K. Luk, and K. Jinupun, "Design and analysis of high-speed coreless axial flux permanent magnet generator with circular magnets and coils," IET Electr. Power Appl., Vol. 4, No. 9, 739-747, Nov. 2010.
doi:10.1049/iet-epa.2010.0081        Google Scholar

7. De Donato, G., F. Giulii Capponi, A. Rivellini, and F. Caricchi, "Integral-slot versus fractional-slot concentrated-winding axial-°ux permanent-magnet machines: Comparative design, FEA, and experimental tests," IEEE Trans. on Ind. Appl., Vol. 48, No. 5, 1487-1495, Sep./Oct. 2012.
doi:10.1109/TIA.2012.2210011        Google Scholar

8. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402        Google Scholar

9. Caricchi, F., F. Maradei, G. De Donato, and F. G. Capponi, "Axial-°ux permanent-magnet generator for induction heating Gensets," IEEE Trans. on Ind. Electron., Vol. 57, No. 1, 128-137, Jan. 2010.
doi:10.1109/TIE.2009.2028292        Google Scholar

10. Gieras, J. F., et al. Axial Flux Permanent Magnet Brushless Machines, 2nd Ed., Springer-Verlag, New York, 2008.

11. Kurronen, P. and J. Pyrhonen, "Analytic calculation of axial-flux permanent-magnet motor torque," IET Electr. Power Appl., Vol. 1, No. 1, 59-63, Jan. 2007.
doi:10.1049/iet-epa:20060093        Google Scholar

12. Di Stefano, R. and F. Marignetti, "Electromagnetic analysis of axial-flux permanent magnet synchronous machines with fractional windings with experimental validation," IEEE Tran. on Ind. Electron., Vol. 59, No. 6, 2573-2582, Jun. 2012.
doi:10.1109/TIE.2011.2165458        Google Scholar

13. Nguyen, T. D., K. J. Tseng, S. Zhang, and H. T. Nguyen, "A novel axial flux permanent-magnet machine for flywheel energy storage system: Design and analysis," IEEE Tran. on Ind. Electron., Vol. 58, No. 9, 3784-3794, Sep. 2011.
doi:10.1109/TIE.2010.2089939        Google Scholar

14. Mahmoudi, A., S. Kahourzade, N. A. Rahim, and W. P. Ping, "Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 124, 383-404, 2012.
doi:10.2528/PIER11122501        Google Scholar

15. Di Gerlando, A., G. Foglia, and R. Perini, "Permanent magnet machines for modulated damping of seismic vibrations: Electrical and thermal modeling," IEEE Trans. on Ind. Electron., Vol. 55, No. 10, 3602-3610, Oct. 2008.
doi:10.1109/TIE.2008.928105        Google Scholar

16. Mahmoudi, A., S. Kahourzade, N. A. Rahim, W. P. Hew, and N. F. Ershad, "Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor ," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.        Google Scholar

17. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A general approach to sizing and power density equations for comparison of electrical machines," IEEE Trans. on Ind. Appl., Vol. 34, No. 1, 92-97, Jan./Feb. 1998.
doi:10.1109/28.658727        Google Scholar

18. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A comparison of power density for axial flux machines based on the general purpose sizing equation," IEEE Trans. on Energy Convers., Vol. 14, No. 2, 185-192, Jan. 1999.
doi:10.1109/60.766982        Google Scholar

19. Aydin, M., S. Huang, and T. A. Lipo, "Design and 3D lectromagnetic field analysis of non-slotted and slotted TORUS type axial flux surface mounted permanent magnet disc machines ," IEEE International Electric Machines and Drives Conf., 645-651, Jan. 2001.        Google Scholar

20. Aydin, M., S. Huang, and T. A. Lipo, "Optimum design and 3D finite element analysis of non-slotted and slotted internal rotor type axial flux PM disc machines," IEEE Power Engineering Society Summer Meeting, 645-651, Jul. 2001.

21. Upadhyay, P. R. and K. R. Rajagopa, "FE analysis and computer-aided design of a Sandwiched axial-flux permanent magnet brushless DC motor," IEEE Trans. on Magn., Vol. 42, No. 10, Oct. 2006..        Google Scholar

22. Chan, T. F. and L. L. Lai, "An axial-flux permanent-magnet synchronous generator for a direct-coupled wind-turbine system," IEEE Trans. on Energy Convers., Vol. 22, No. 1, Mar. 2007.        Google Scholar

23. Di Gerlando, A., G. Foglia, M. F. Iacchetti, and R. Perini, "Axial flux PM machines with concentrated armature windings: Design analysis and test validation of wind energy generators," IEEE Tran. on Ind. Electron., Vol. 58, No. 9, Sep. 2011.        Google Scholar

24. Rostami, N., M. Feyzi, J. Pyrhonen, A. Parviainen, and V. Behjat, "Genetic algorithm approach for improved design of a variable speed axial-flux permanent-magnet synchronous generator," IEEE Trans. Magn., 2012.        Google Scholar

25. Chang, L., C. Liao, L.-L. Chen, W. Lin, X. Zheng, and Y.-L. Wu, "Design of an ultra-wideband power divider via the coarse-grained parallel micro-genetic algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.
doi:10.2528/PIER11120517        Google Scholar

26. Gargama, H., S. K. Chaturvedi, and A. K. Thakur, "Design and optimization of multilayered electromagnetic shield using a real-coded genetic algorithm," Progress In Electromagnetics Research B, Vol. 39, 241-266, 2012.
doi:10.2528/PIERB12011902        Google Scholar

27. Friedrich, G. and M. Kant, "Choice of drives for electric vehicles: A comparison between two permanent magnet AC machines," IEE Proceedings Electric Power Applications, Vol. 45, No. 3, 247-252, May 1998.        Google Scholar

28. Jian, L., G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.        Google Scholar

29. Zhu, X., W. Shao, J.-L. Li, and Y.-L. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703        Google Scholar

30. Hanselman, D. C., Brushless Permanent Magnet Motor Design, McGraw-Hill, New York, 1994.

31. Bianchi, N., Electrical Machine Analysis Using Finite Element, Taylor & Francis, CRC Press, Florida, 2005.

32. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303        Google Scholar

33. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.        Google Scholar

34. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407        Google Scholar

35. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012.        Google Scholar

36. Opera Version 14.0 User Guide, Vector Fields, 2011, http://www.cobham.com.

37. Chung, T., Computational Fluid Dynamics, Cambridge University Press, 2010.

38. Giovani, A. Numerical investigation of air flow and heat transfer in axial flux permanent magnet machines, Ph.D. Thesis, School of Engineering and Computer Science, Durham University, UK, Mar. 2010.

39. Versteeg, H. K. and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, Pearson, 2007.

40. ANSYS-FLUENT Finite Volume Simulation Software, ANSYS Inc, PA, Canonsburg, http://www.ansys.com.

41. Li, H., "Cooling of a permanent magnet electric motor with a centrifugal impeller," International Journal of Heat and Mass Transfer, Vol. 53, No. 4, 797-810, 2010.
doi:10.1016/j.ijheatmasstransfer.2009.09.022        Google Scholar

42. Saari, J. Thermal analysis of high-speed induction machines, Ph.D. Thesis, Helsinki University Technology, Helsinki, Finland, Jan. 1998.

43. Wu, L. J., Z. Q. Zhu, D. A. Staton, M. Popescu, and D. Hawkins, "Comparison of analytical models of cogging torque in surface-mounted PM machines," IEEE Tran. on Ind. Electron., Vol. 59, No. 6, 2414-2425, Jun. 2012.
doi:10.1109/TIE.2011.2143379        Google Scholar

44. Blazek, J., Computational Fluid Dynamics: Principles and Applications, Elsevier Science Ltd, 2005.

45. GAMBIT Software Tools Version 0.2010.09.01, available: http://www.gambit-project.org.

46. Marignetti, F., V. Delli Colli, and Y. Coia, "Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis," IEEE Trans. on Ind. Electron., Vol. 55, No. 10, 3591-3601, Oct. 2008.
doi:10.1109/TIE.2008.2005017        Google Scholar

47. Wang, R. J., M. J. Kamper, and K. V. D. Westhuizen, "Optimal design of a coreless stator axial flux permanent magnet generator," IEEE Trans. on Magn., Vol. 41, No. 1, 55-64, Jan. 2005.
doi:10.1109/TMAG.2004.840183        Google Scholar