Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-28
Magnetic Response and Negative Refraction at Optical Frequencies on the Basis of Electronic Transitions in Rare-Earth Ions Doped Crystals
By
Progress In Electromagnetics Research, Vol. 137, 475-485, 2013
Abstract
Magnetic response based on a two-level magnetic dipole transition in rare earth ions doped crystals was studied. Semi-classic theory and Wigner-Eckart theorem were used to calculate the magnetic permeability. It is found that negative permeability can be attained near the transition frequencies. In order to realize simultaneously negative permittivity and negative permeability, an electric dipole transition at the same frequency was also adopted, and a negative refraction region with a bandwidth of 0.57 MHz is demonstrated in (Yb0.02 Sm0.02Y0.96)3Al5O12 crystal. This explores a new route to obtain magnetic response and negative refraction at optical frequencies with nature-existed materials instead of metamaterials.
Citation
Xiaojian Fu, Yuanda Xu, and Ji Zhou, "Magnetic Response and Negative Refraction at Optical Frequencies on the Basis of Electronic Transitions in Rare-Earth Ions Doped Crystals," Progress In Electromagnetics Research, Vol. 137, 475-485, 2013.
doi:10.2528/PIER12120708
References

1. Viktor, G. V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Grzegorczyk, T. M., X. Chen, J. Pacheco, Jr., J. Chen, B. I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901

4. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

6. Xi, S., H. Chen, B. I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105

7. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE T. Microw. Theory., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

8. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz , "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

9. Veselago, V. G. and E. E. Narimanov, "The left hand of brightness: Past, present and future of negative index materials," Nat. Mater., Vol. 5, 759-762, 2006.
doi:10.1038/nmat1746

10. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamate-rial with a negative refractive index," Nature, Vol. 455, 376-332, 2008.
doi:10.1038/nature07247

11. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photon., Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

12. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater., Vol. 7, 31-37, 2008.
doi:10.1038/nmat2072

13. Krowne, C. M., "The road to quantum level negative index metamaterials," Waves Random Complex, Vol. 20, 223-250, 2010.
doi:10.1080/17455030903581149

14. Shen, J. Q., Z. C. Ruan, and S. L. He, "How to realize a negative refractive index material at the atomic level in an optical frequency range," J. Zhejiang Univ.-Sc. A, Vol. 5, 1322-1326, 2004.
doi:10.1631/jzus.2004.1322

15. Oktel, M. O. and O. E. Mustecaplıoglu, "Electromagnetically induced left-handedness in a dense gas of three-level atoms," Phys. Rev. A, Vol. 70, 053806, 2004.
doi:10.1103/PhysRevA.70.053806

16. Shen, J. Q., "Gain-assisted negative refractive index in a quantum coherent medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.

17. Kussow, A. G. and A. Akyurtlu, "Negative refraction index in the magnetic semiconductor In2-xCrxO3: Theoretical analysis," Phys. Rev. B, Vol. 78, 205202, 2008.
doi:10.1103/PhysRevB.78.205202

18. Kussow, A. G. and A. Akyurtlu, "Electromagnetically induced negative refractive index in doped semiconductors at optical frequencies," Int. J. Mod Phys B, Vol. 25, 347-364, 2011.
doi:10.1142/S0217979211057906

19. Wybourne, B. G., Spectroscopic Properties of Rare Earths, John Wiley & Sons, Inc., New York, 1965.

20. Gschneidner, Jr., K. A. and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, North Holland Publishing Company, Amsterdam, 1982.

21. Thommen, Q. and P. Mandel, "Left-handed properties of erbium-doped crystals," Opt. Lett., Vol. 31, 1803-1805, 2006.
doi:10.1364/OL.31.001803

22. Liu, C. X., J. S. Zhang, J. Y. Liu, and G. Jin, "The electromagnetically induced negative refractive index in the Er3+ : YAlO3 crystal," J. Phys. B: At., Mol. Opt. Phys., Vol. 42, 095402, 2009.
doi:10.1088/0953-4075/42/9/095402

23. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press & Beijing World Publishing Corporation, Cambridge, 2009.

24. Krowne, C. M., "Multi-species two-level atomic media displaying electromagnetic left handedness," Phys. Lett. A, Vol. 372, 2304-2310, 2008.
doi:10.1016/j.physleta.2007.11.045

25. Zare, R. N., Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988.

26. Wu, C. T., Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, "Diode-pumped single frequency Tm : YAG laser at room temperature," Laser Phys. Lett., Vol. 5, 793-796, 2008.
doi:10.1002/lapl.200810069

27. Lacovara, P., H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb : YAG laser," Opt. Lett., Vol. 16, 1089-1091, 1991.
doi:10.1364/OL.16.001089

28. Judd, B. R., "Optical absorption intensities of rare-earth ions," Phys. Rev., Vol. 127, 750-761, 1962.
doi:10.1103/PhysRev.127.750

29. Ofelt, G. S., "Intensities of crystal spectra of rare-earthions," J. Chem. Phys., Vol. 37, 511-520, 1962.
doi:10.1063/1.1701366

30. Fu, X. J., Y. D. Xu, and J. Zhou, "Abnormal dielectric response in an optical range based on electronic transition in rare-earth-ion-doped crystals," Chin. Phys. Lett., Vol. 29, 027805, 2012.
doi:10.1088/0256-307X/29/2/027805

31. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

32. Kaczkan, M., Z. Frukacz, and M. Malinowski, "Infrared-to-visible wavelength upconversion in Sm3+-activated YAG crystals," J. Alloy. Compd., Vol. 323-324, 736-739, 2001.
doi:10.1016/S0925-8388(01)01066-0

33. Malinowski, M., R. Wolski, Z. Frukacz, T. Lukasiewicz, and Z. Luczynski, "Spectroscopic studies of YAG: Sm3+ crystals," J. Appl. Spectrosc., Vol. 62, 840-843, 1995.
doi:10.1007/BF02606647

34. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, San digo, CA, 1998.

35. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

36. Aslam, M. I. and D. O. Gueney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013.

37. Guo, J., Y. Xiang, X. Dai, and S. Wen, "Enhanced nonlinearities in double-fishnet negative-index photonic metamaterials," Progress In Electromagnetics Research, Vol. 136, 269-282, 2013.