1. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology, Vol. 216, 279-283, Jul. 2000. Google Scholar
2. Robert, P., A. Kruger, M. Kathy, D. Miller, M. Handel, E. Reynolds, J. William, L. Kiser, M. Daniel, R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology, Vol. 216, 279-293, 2000. Google Scholar
3. Kruger, R. A. and W. L. Kiser, "Thermoacoustic CT of the breast: Pilot study observations," Proc. SPIE, Vol. 4256, 1-5, 2001.
doi:10.1117/12.429292 Google Scholar
4. Wang, L. V., "Prospects of photoacoustic tomography," Medical Physics, Vol. 35, 5758-5767, Dec. 2008.
doi:10.1118/1.3013698 Google Scholar
5. Patch, S. K. and O. Scherzer, "Photo- and thermo-acoustic imaging," Inverse Problems, Vol. 23, S01-S10, 2007.
doi:10.1088/0266-5611/23/6/S01 Google Scholar
6. Wang, L. V., "Tutorial on photoacoustic microscopy and computed tomography," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, 171-179, Jan.-Feb. 2008.
doi:10.1109/JSTQE.2007.913398 Google Scholar
7. Razansky, D., M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, "Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo," Nature Photonics, Vol. 3, 412-417, Jul. 2009.
doi:10.1038/nphoton.2009.98 Google Scholar
8. Ntziachristos, V. and D. Razansky, "Molecular imaging by means of multispectral optoacoustic tomography (MSOT)," Chem. Rev., Vol. 110, 2783-2794, May 2012.
doi:10.1021/cr9002566 Google Scholar
9. Jin, X., C. H. Li, and L. V. Wang, "Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography," Medical Physics, Vol. 35, 3205-3214, Jul. 2008.
doi:10.1118/1.2938731 Google Scholar
10. Feng, D., Y. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture," Medical Physics, Vol. 28, 2001.
doi:10.1118/1.1418015 Google Scholar
11. Wang, L. V., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Review of Scientific Instruments, Vol. 70, 3744-3748, 1999.
doi:10.1063/1.1149986 Google Scholar
12. Kruger, R. A., W. L. Kiser, K. D. Miller, and H. E. Reynolds, "Thermoacoustic CT: Imaging principles," Proc. SPIE on Biomedical Optoacoustics, 150-159, 2000.
doi:10.1117/12.386316 Google Scholar
13. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Medical Physics, Vol. 37, 4602-4607, Sep. 2010.
doi:10.1118/1.3467756 Google Scholar
14. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field thermoacoustic tomography of small animals," Physics in Medicine and Biology, Vol. 56, 3433, 2011.
doi:10.1088/0031-9155/56/11/016 Google Scholar
15. Fallon, D., L. Yan, G. W. Hanson, and S. K. Patch, "RF testbed for thermoacoustic tomography," Rev. Sci. Instrum., Vol. 80, 064301, Jun. 2009.
doi:10.1063/1.3133802 Google Scholar
16. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets," Phys. Med. Biol., Vol. 54, 641-650, Feb. 7, 2009.
doi:10.1088/0031-9155/54/3/011 Google Scholar
17. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermoacoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 2005. Google Scholar
18. Yan, J., C. Tao, and S. Wu, "Energy transform and initial acoustic pressure distribution in microwave-induced thermoacoustic tomography," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005. Google Scholar
19. Jung, M., T. H. G. G. Weise, U. Braunsberger, and F. Sabath, "High power compact UWB systems," International Conference on Pulsed Power Applications, Mar. 29-30, 2001. Google Scholar
20. Xu, Y. and L. V. Wang, "Rhesus monkey brain imaging through intact skull with thermoacoustic tomography," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 53, 542-548, Mar. 2006.
doi:10.1109/TUFFC.2006.1610562 Google Scholar
21. Munteanu, I. and T. Weiland, "RF & microwave simulation with the finite integration technique - From component to system design," Scientific Computing in Electrical Engineering, 247-260, 2007.
doi:10.1007/978-3-540-71980-9_26 Google Scholar
22. Marklein, R., "The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields," Review of Radio Science, 201-244, IEEE Press, Piscataway, 2002. Google Scholar
23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition, Artech House, 2007.
24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar