1. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2 GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012. Google Scholar
2. Huang, T.-Y. and T.-J. Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60GHZ wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.
doi:10.2528/PIERM11080109 Google Scholar
3. Sarrazin, T., H. Vettikalladi, O. Lafond, M. Himdi, and N. Rolland, "Low cost 60 GHz new thin Pyralux membrane antennas fed by substrate integrated waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012. Google Scholar
4. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetic Research,, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105 Google Scholar
5. Kapilevich, B. and B. Litvak, "Noise versus coherency in MM-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011. Google Scholar
6. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012. Google Scholar
7. Ogawa, H. and D. Polifko, "Fiber optic millimeter-wave subcarrier transmission links for personal radio communication systems," IEEE MTT-S International Microwave Symposium Digest, 555-558, 1992. Google Scholar
8. Lu, H.-H., C.-Y. Li, C.-H. Lee, Y.-C. Hsiao, and H.-W. Chen, "Radio-over-fiber transport systems based on DFB LD with main and - 1 side modes injection-locked technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604 Google Scholar
9. Chun, T., Lin, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photonics Technology Letters, Vol. 20, No. 12, 1027-1029, 2008.
doi:10.1109/LPT.2008.923739 Google Scholar
10. Kotb, H. E., M. Y. Shalaby, and M. H. Ahmed, "Generation of nanosecond optical pulses with controlled repetition rate using incavity intensity modulated brillouin erbium fiber laser," Progress In Electromagnetics Research, Vol. 113, 313-331, 2011. Google Scholar
11. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012. Google Scholar
12. Jia, Z., et al. "Key enabling technologies for optical wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology, Vol. 25, 3452-3471, 2007.
doi:10.1109/JLT.2007.909201 Google Scholar
13. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012. Google Scholar
14. Kapilevich, B. and B. Litvak, "Noise versus coherency in MM-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011. Google Scholar
15. Park, C., C. G. Lee, and C. S. Park, "Photonic frequency Up conversion by SBS-based frequency tripling," Journal of Lightwave Technology, Vol. 25, No. 7, 1711-1718, 2007.
doi:10.1109/JLT.2007.897749 Google Scholar
16. Wang, Q., H. Rideout, F. Zeng, and J. Yao, "Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2460-2462, 2006.
doi:10.1109/LPT.2006.886826 Google Scholar
17. Yu, J., Z. Jia, L. Yi, Y. Su, G. K. Chang, T. and Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photonics Technology Letters, Vol. 18, No. 1, 265-267, 2006.
doi:10.1109/LPT.2005.862006 Google Scholar
18. Liu, J., L. Zhang, S.-H. Fan, C. Guo, S. He, and G.-K. Chang, "A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks," Progress In Electromagnetics Research, Vol. 126, 139-148, 2012.
doi:10.2528/PIER12012701 Google Scholar
19. Shi, P., et al., "A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter," Optical Fiber Technology, Vol. 17, 236-241, 2011.
doi:10.1016/j.yofte.2011.02.007 Google Scholar
20. Zhang, J., H. Chen, M. Chen, T. Wang, and S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photonics Technology Letters, Vol. 19, No. 14, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462 Google Scholar
21. Deng, L., D. Liu, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. K. Dogadaev, X. Yu, I. T. Monroy, M. Beltran, and R. Llorente, "42.13 Gbit/S 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," Progress In Electromagnetics Research, Vol. 126, 449-461, 2012.
doi:10.2528/PIER12013006 Google Scholar
22. Qi, G., J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," Journal of Lightwave Technology, Vol. 23, No. 9, 2687-2695, 2005.
doi:10.1109/JLT.2005.854067 Google Scholar
23. Shi, P., S. Yu, et al. "A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator," Optics Communications, Vol. 283, No. 19, 3667-3672, 2010.
doi:10.1016/j.optcom.2010.05.021 Google Scholar
24. Al-Shareefi, N. A., S. H. Idris, M. F. B. A. Malek, R. Ngah, S. A. Aljunid, R. A. Fayadh, J. Adhab, and H. A. Rahim, "Development of a new approach for high-quality quadrupling frequency optical millimeter-wave signal generation without optical filter," Progress In Electromagnetics Research, Vol. 134, 189-208, 2012. Google Scholar
25. Chen, L., H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photonics Technology Letters, Vol. 18, No. 19, 2056-2058, 2006.
doi:10.1109/LPT.2006.883293 Google Scholar
26. Zavargo-Peche, L., A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, "Fourier based combined techniques to design novel sub-wavelength optical integrated devices," Progress In Electromagnetics Research, Vol. 123, 447-465, 2012.
doi:10.2528/PIER11072907 Google Scholar
27. He, J., L. Chen, Z. Dong, S. Wen, and J. Yu, "Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation," Optical Fiber Technology, Vol. 15, No. 3, 290-295, 2009.
doi:10.1016/j.yofte.2008.12.006 Google Scholar
28. Liu, X., et al., "Frequency quadrupling using an integrated Mach-Zehnder modulator with four arms," Optics Communications, Vol. 284, 4052-4058, 2011.
doi:10.1016/j.optcom.2011.04.008 Google Scholar
29. Zhao, Y., et al., "Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators," Optics Letters, Vol. 34, 3250-3252, 2009.
doi:10.1364/OL.34.003250 Google Scholar
30. Ma, J., et al., "Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation," Journal of Lightwave Technology, Vol. 25, 3244-3256, 2007.
doi:10.1109/JLT.2007.907794 Google Scholar