Vol. 137
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-04
Arbitrary Loss Factors in the Wave Propagation Between RHM and LHM Media with Constant Impedance Throughout the Structure
By
Progress In Electromagnetics Research, Vol. 137, 527-538, 2013
Abstract
We investigate the wave propagation properties in lossy structures with graded permittivity and permeability involving left-handed metamaterials. An exact analytic solution to Helmholtz' equation for a lossy case with both real and imaginary parts of permittivity and permeability profile, changing according to a hyperbolic tangent function along the direction of propagation, is obtained. It allows for different loss factors in RHM and LHM media. Thereafter, the corresponding numerical solution for the field intensity along the composite structure is obtained by means of a dispersive numerical model of lossy metamaterials that uses a transmission line matrix method based on Z-transforms. We present the expressions and graphical results for the field intensity along the composite structure and compare the analytic and numerical solutions, showing that there is an excellent agreement between them.
Citation
Mariana Dalarsson Martin Karl Norgren Tatjana Asenov Nebojsa Doncov , "Arbitrary Loss Factors in the Wave Propagation Between RHM and LHM Media with Constant Impedance Throughout the Structure," Progress In Electromagnetics Research, Vol. 137, 527-538, 2013.
doi:10.2528/PIER13013004
http://www.jpier.org/PIER/pier.php?paper=13013004
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Mat., Vol. 10, No. 22, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

4. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, F. Martiacute, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

5. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.
doi:10.1364/OL.30.003198

6. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 1-4, 2005.

7. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fish-net structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114

8. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

10. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and , "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009.
doi:10.1364/OL.34.003478

11. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, Dordrecht, 2009.

12. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press Bellingham, WA & CRC Press, Taylor & Francis Group, Boca Raton, FL, 2009.

13. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

14. Fang, N., H. Lee, C. Sun, and X. Zhang, "Subdiffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

15. Engheta, N., "An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Anten. Wirel. Propag. Lett., Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

16. Zhu, W., I. Rukhlenko, and M. Premaratne, "Linear transfor-mation optics for plasmonics," Journal of the Optical Society of America B: Optical Physics, Vol. 29, No. 10, 2659-2664, 2012.
doi:10.1364/JOSAB.29.002659

17. Novitsky, A. V., S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, "Field approach in the transformation optics concept," Progress In Electromagnetics Research, Vol. 129, 485-515, 2012.

18. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagneticwaves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.
doi:10.2528/PIER11101010

19. Zhu, W., I. D. Rukhlenko, and M. Premaratne, "Manipulating energy flow in variable-gap plasmonic waveguides," Opt. Lett., Vol. 37, No. 24, 5151-5153, 2012.
doi:10.1364/OL.37.005151

20. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
doi:10.1126/science.1126493

21. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

22. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, No. 5976, 337-339, 2010.
doi:10.1126/science.1186351

23. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, No. 8, 8247-8256, 2006.
doi:10.1364/OE.14.008247

24. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

25. Fung, T. H., L. L. Leung, J. J. Xiao, and K. W. Yu, "Controlling electric fields spatially by graded metamaterials: Implication on enhanced nonlinear optical responses," Opt. Commun., Vol. 282, 1028-1031, 2009.
doi:10.1016/j.optcom.2008.11.028

26. Ramakrishna, S. A. and J. B. Pendry, "Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry," Phys. Rev. B, Vol. 69, 115115, 2004.
doi:10.1103/PhysRevB.69.115115

27. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "A gradient index metamaterial," Phys. Rev. E, Vol. 71, 036609, 2005.
doi:10.1103/PhysRevE.71.036609

28. Pinchuk, A. O. and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A, Vol. 24, A39-A44, 2007.
doi:10.1364/JOSAA.24.000A39

29. Litchinitser, N. M., N. M., A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, "Metamaterials: Electromagnetic enhancement at zero-index transition," Opt. Lett., Vol. 33, 2350-2352, 2008.
doi:10.1364/OL.33.002350

30. Dalarsson, M. and P. Tassin, "Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material," Opt. Express, Vol. 17, No. 8, 6747-6752, 2009.
doi:10.1364/OE.17.006747

31. Dalarsson, M., Z. Jaksic, and P. Tassin, "Exact analytical solution for oblique incidence on a graded index interface between a right-handed and a left-handed material," J. Optoel. Biomed. Mat., Vol. 1, 345-352, 2009.

32. Dalarsson, M., Z. Jaksic, and P. Tassin, "Structures containing left-handed metamaterials with refractive index gradient: Exact analytical versus numerical treatment," Microwave Rev., Vol. 15, 1-5, 2009.

33. Dalarsson, M., M. Norgren, and Z. Jak·sic, "Lossy gradient index metamaterial with sinusoidal periodicity of refractive index: Case of constant impedance throughout the structure," J. Nanophoton., Vol. 5, 051804, 2011.
doi:10.1117/1.3590251

34. Dalarsson, M., M. Norgren, and Z. Jaksic, "Lossy wave propagation through a graded interface to a negative index material case of constant impedance," Microwave Rev., Vol. 17, 1-6, 2011.

35. Doncov, N., B. Milovanovic, T. Asenov, and J. Paul, "TLM modelling of left-handed metamaterials by using digital filtering techniques," Microwave Rev., Vol. 16, 2-7, 2010.

36. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM. Part I: Materials with frequency dependent properties," IEEE Trans. Antennas and Propag., Vol. 47, No. 10, 1528-1534, 1999.
doi:10.1109/8.805895

37. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM. Part II: Materials with anisotropic properties," IEEE Trans. Antennas and Propag., Vol. 47, No. 10, 1535-1542, 1999.
doi:10.1109/8.805896