1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
4. Iwanaga, M., "First-principle analysis for electromagnetic eigen modes in an optical metamaterial slab," Progress In Electromagnetics Research, Vol. 132, 129-148, 2012. Google Scholar
5. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012. Google Scholar
6. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49 Google Scholar
7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
8. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
9. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E,, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621 Google Scholar
10. Danaeifar, M., M. Kamyab, A. Jafargholi, and M. Veysi, "Bandwidth enhancement of a class of cloaks incorporating metamaterials," Progress In Electromagnetics Research Letters, Vol. 28, 37-44, 2012.
doi:10.2528/PIERL11093005 Google Scholar
11. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
12. Zhang, Y., Y. Chuang, J. O. Schenk, and M. A. Fiddy, "Study of scattering patterns and subwavelength scale imaging based on finite-sized metamaterials," Applied Physics A, Vol. 107, 61-69, 2012.
doi:10.1007/s00339-011-6738-9 Google Scholar
13. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402 Google Scholar
14. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606 Google Scholar
15. Ma, Y. G., C. K. Ong, T. Tyc, and U. Leonhardt, "An omnidirectional retroreflector based on the transmutation of dielectric singularities," Nature Materials, Vol. 8, 639-642, 2009.
doi:10.1038/nmat2489 Google Scholar
16. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, Vol. 1, 124, 2010.
doi:10.1038/ncomms1126 Google Scholar
17. Talley, C. E., J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates," Nano Letters, Vol. 5, 1569-1574, 2005.
doi:10.1021/nl050928v Google Scholar
18. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
19. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.
20. Zhang, Y., X. Zhang, T. Mei, and M. Fiddy, "Negative index modes in surface plasmon waveguides: A study of the relations between lossless and lossy cases," Optics Express, Vol. 18, 12213-12225, 2010.
doi:10.1364/OE.18.012213 Google Scholar
21. Li, J., Y. Zhang, T. Mei, and M. Fiddy, "Surface plasmon laser based on metal cavity array with two different modes," Optics Express, Vol. 18, 23626-23632, 2010.
doi:10.1364/OE.18.023626 Google Scholar
22. Tribelsky, M. I. and B. S. Luk'yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902 Google Scholar
23. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999 Google Scholar
24. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit," Optics Express, Vol. 19, 21189-21198, 2011.
doi:10.1364/OE.19.021189 Google Scholar
25. Ma, Y. G. and C. K. Ong, "Generation of surface-plasmon-polariton like resonance mode in microwave metallic gratings," New Journal of Physics, Vol. 10, 063017, 2008.
doi:10.1088/1367-2630/10/6/063017 Google Scholar
26. Pors, A., E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, "Localized spoof plasmons arise while texturing closed surfaces," Phys. Rev. Lett., Vol. 108, 223905, 2012.
doi:10.1103/PhysRevLett.108.223905 Google Scholar
27. Hao, F., T. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Letters, Vol. 8, 3983-3988, 2008.
doi:10.1021/nl802509r Google Scholar