1. Penury, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, November 1999. Google Scholar
2. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bian-isotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, No. 14, 144440, April 2002.
doi:10.1103/PhysRevB.65.144440 Google Scholar
3. Maslovski, S., P. Ikonen, I. Kolmakov, and S. Tretyakov, "Arti¯cial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
doi:10.2528/PIER04101101 Google Scholar
4. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, No. 1, 141-145, January 2004.
doi:10.1103/PhysRevB.69.014402 Google Scholar
5. Boybay, M. and O. M. Ramahi, "Near-field probes using double and single negative media," Physical Review E, Vol. 79, No. 1, 016602-016611, January 2009.
doi:10.1103/PhysRevE.79.016602 Google Scholar
6. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 391-3399, November 2006. Google Scholar
7. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207-402, May 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
9. Lahiri, B., A. Z. Khokhar, R. M. Delarue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Optics Express, Vol. 4, No. 3, 1107-1115, January 2009.
doi:10.1364/OE.17.001107 Google Scholar
10. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging," Journal of Optical Society America B, Vol. 23, No. 3, 391-403, March 2006.
doi:10.1364/JOSAB.23.000391 Google Scholar
11. Kabiri, A., L. Yousefi, and O. M. Ramahi, "On the fundamental limitations of artificial magnetic materials," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2345-2353, July 2010.
doi:10.1109/TAP.2010.2048845 Google Scholar
12. Sauviac, B., C. R. Siovski, and S. A. Tretyakov, "Double split-ring resonators: Analytical modeling and numerical simulation," Electromagnetics, Vol. 24, No. 5, 317-338, February 2004.
doi:10.1080/02726340490457890 Google Scholar
13. Shamonin, M., E. Shamonina, V. Kalinin, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring," Journal of Applied Physics, Vol. 95, No. 57, 3778-3784, April 2004. Google Scholar
14. Ikonen, P. and S. A. Tretyakov, "Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 1, 92-99, January 2007.
doi:10.1109/TMTT.2006.886914 Google Scholar
15. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials ," Physical Review A, Vol. 78, 013842(1)-013842(1), July 2008. Google Scholar
16. Markos, P. and C. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Physical Review E, Vol. 65, No. 3, 36622-36623, March 2002.
doi:10.1103/PhysRevE.65.036622 Google Scholar
17. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, 2572-2581, October 2003. Google Scholar
18. Baena, J. D., L. Jelinek, and R. Marqus, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," Physical Review B, Vol. 76, 24515(1)-24515(14), December 2007. Google Scholar
19. Gay-Balmaz, P. and O. J. F. Martin, "Efficient isotropic magnetic resonators," Applied Physics Letters, Vol. 81, No. 5, 939-941, 2001.
doi:10.1063/1.1496507 Google Scholar
20. Landau, L. D., L. P. Pitaevskii, and E. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Pergamon Press, 2004.
21. Cummer, S. A., B.-I. Popa, and T. H. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, January 2008.
doi:10.1109/TAP.2007.912959 Google Scholar
22. Forray, M. J., Variational Calculus in Science and Engineering, McGraw Hill, 1968.
23. Kabiri, A. and O. M. Ramahi, "nth order rose curve as a generic candidate for RF artificial magnetic material," Applied Physics Letters, Vol. 103, 831-834, January 2011. Google Scholar