1. Yan, L., L. Zhang, T. Wang, Z. Jiao, C. Y. Chen, and I. M. Chen, "Magnetic field of tubular linear machines with dual Halbach array," Progress In Electromagnetics Research, Vol. 136, 283-299, 2013. Google Scholar
2. Wang, J., W. Wang, and K. Atallah, "A linear permanent-magnet motor for active vehicle suspension," IEEE Transactions on Vehicular Technology, Vol. 60, No. 1, 55-63, 2011.
doi:10.1109/TVT.2010.2089546 Google Scholar
3. Yamada, H., M. Yamaguchi, H. Kobayashi, Y. Matsuura, and H. Takano, "Development and test of a linear motor-driven total artificial heart," IEEE Engineering in Medicine and Biology Magazine, Vol. 14, No. 1, 84-90, 1995.
doi:10.1109/51.340753 Google Scholar
4. Llibre, J. F., N. Martinez, P. Leprince, and B. Nogarede, "Innovative linear pulsatile pump for heart assistance circulatory," Proceedings of the 8th International Symposium on Linear Drives for Industrial Application, Paper No. 207, on CD, Eindhoven, Netherlands, 2011. Google Scholar
5. Wang, J., M. West, D. Howe, H. Z.-D. La Parra, and W. M. Arshad, "Design and experimental verification of a linear permanent magnet generator for a free-piston energy converter," IEEE Transactions on Energy Conversion, Vol. 22, No. 2, 299-306, 2007.
doi:10.1109/TEC.2006.875434 Google Scholar
6. Wang, J. and D. Howe, "Tubular modular permanent-magnet machines equipped with quasi-halbach magnetized magnets - Part I: Magnetic field distribution, EMF, and thrust force," IEEE Transactions on Magnetics, Vol. 41, No. 9, 2470-2478, 2005.
doi:10.1109/TMAG.2005.854328 Google Scholar
7. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012. Google Scholar
8. Alonso, E., et al., "Evaluating rare earth element availability: A case with revolutionary demand from clean technologies," Environmental Science & Technology, Vol. 46, 3406-3414, 2012.
doi:10.1021/es203518d Google Scholar
9. Boldea, I. and S. A. Nasar, Linear Electric Actuators and Generators, Cambridge University Press, 1997.
10. Torkaman, H. and E. Afjei, "Radial force characteristic assessment in a novel two-phase dual layer SRG using FEM," Progress In Electromagnetics Research, 185-202, 2012.
doi:10.2528/PIER12010408 Google Scholar
11. Tomczuk, B. and M. Sobol, "Field analysis of the magnetic systems for tubular linear reluctance motors," IEEE Transactions on Magnetics, Vol. 41, No. 4, 1300-1305, 2005.
doi:10.1109/TMAG.2005.844840 Google Scholar
12. Missaoui, W., L. El Amraoui, F. Gillon, M. Benrejeb, and P. Brochet, "Performance comparison of three and four-phase linear tubular stepping motors," Proceedings of International Conference on Electric Machines, Paper 467, on CD, Chania, Greece, 2006. Google Scholar
13. Szabo, L., I. Bentt»ia, D. C. Popa, and M. Ruba, "Contributions to the two degrees of freedom modular variable reluctance motors used in advanced manufacturing systems," Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics, 093 85.pdf, on CD, Cluj-Napoca, Romania, 2012. Google Scholar
14. Popa, D. C., V. Iancu, and L. Szabo, "Linear transverse flux motor for conveyors," Proceedings of the 6th International Symposium on Linear Drives for Industrial Application, Paper 188, on CD, Lille, France, 2007. Google Scholar
15. Hanselman, D. C., Brushless Permanent-magnet Motor Design, McGraw-Hill, 1994.
16. Norhisam, M., S. Ridzuan, R. N. Firdaus, C. V. Aravind, H. Wakiwaka, and M. Nirei, "Comparative evaluation on power-speed density of portable permanent magnet generators for agricultural application," Progress In Electromagnetics Research, Vol. 129, 345-363, 2012. Google Scholar
17. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011. Google Scholar
18. Popa, D. C., L. Szabo, and V. Iancu, "Improved design of a linear transverse flux reluctance motor," Proceedings of the 11th International Conference on Optimization of Electrical and Electronic Equipment, Paper No. 399, 136-141, Brasov, Romania, 2008. Google Scholar
19. Szabo, L., I. A. Viorel, M. Ruba, and D. C. Popa, "Comparative study on different variable reluctance linear machine structures (with/without permanent magnets)," Proceedings of the 6th International Symposium on Linear Drives for Industrial Application, Paper 173, on CD, Lille, France, 2007. Google Scholar
20. Popa, D. C., V. I. Gliga, L. Szabo, and V. Iancu, "Tubular trans-verse °ux variable reluctance motor in modular construction," Proceedings of the 13th International Conference on Optimization of Electrical and Electronic Equipment, 572-577, Braov, Romania, 2012. Google Scholar
21. Gan, W.C., G. P. Widdowson, M. S. W. Tam, and N. C. Cheung, "Application of linear switched reluctance motors to precision position control," Asian Power Electronics Journal, Vol. 2, No. 1, 31-36, 2008. Google Scholar
22. Krishnan, R., Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design, and Applications, Industrial Electronics Series, CRC Press, 2001.
23. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405 Google Scholar
24. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012. Google Scholar
25. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402 Google Scholar
26. , , , FLUX 3D v11 User Manual, Cedrat, Meylan, France, 2009.