Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-19
CFAR Target Detection in Ground SAR Image Based on Kk Distribution
By
Progress In Electromagnetics Research, Vol. 139, 721-742, 2013
Abstract
This paper deals with the problem of constant false alarm rate (CFAR) target detection in high-resolution ground synthetic aperture radar (SAR) images based on KK distribution. For the parameter estimation of KK distribution, the semi-experiential algorithm is analyzed firstly. Then a new estimation algorithm based on the particle swarm optimization (PSO) is proposed, which takes the discrepancies between the histogram of the clutter data and probability density function (PDF) of KK distribution at some selected points as the cost function to search for the optimal parameter values using PSO algorithm. The performance of the two algorithms is compared using Monte-Carlo simulation using the simulated data sets generated under different conditions; and the estimation results validate the better performance of the new algorithm. Then the KK distribution, which is proposed for spiky sea clutter originally, is applied to model the real ground SAR clutter data. The goodness-of-fit test clearly show that the KK distribution is able to model the ground SAR clutter much better than some common used model, such as standard K-distribution and Gamma, etc. On this basis, a global CFAR target detection algorithm is presented. The detection threshold is calculated numerically through the cumulative density function (CDF) of KK distribution. Comparing the amplitude of every SAR image pixel with this threshold, the potential targets in ground SAR images can be located effectively. Then target clustering is implemented to eliminate the false alarm and obtain more accurate target regions. The detection results of the proposed algorithm in a typical ground SAR image show that it has better performance than the detector based on G0 distribution.
Citation
Yanzhao Gao, Ronghui Zhan, Jianwei Wan, Jiemin Hu, and Jun Zhang, "CFAR Target Detection in Ground SAR Image Based on Kk Distribution," Progress In Electromagnetics Research, Vol. 139, 721-742, 2013.
doi:10.2528/PIER13031602
References

1. Yan, W., J.-D. Xu, G. Wei, L. Fu, and H.-B. He, "A fast 3D imaging technique for near-field circular SAR processing," Progress In Electromagnetics Research, Vol. 129, 271-285, 2012.

2. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

3. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

4. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

5. Xu, W., P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-tops SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

6. Novak, L. M., G. J. Owirka, and A. L. Weaver, "Automatic target recognition using enhanced resolution SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 1, 157-175, 1999.
doi:10.1109/7.745689

7. Wang, Y., Q. Song, T. Jin, X. Huang, and H. Zhang, "A novel minefield detection approach based on morphological diversity," Progress In Electromagnetics Research, Vol. 136, 239-253, 2013.

8. Lou, J., T. Jin, and Z. Zhou, "Feature extraction for landmine detection in UWB SAR via SWD and isomap," Progress In Electromagnetics Research, Vol. 138, 157-171, 2013.

9. Zhai, Y., J. Li, J. Gan, and Z. Ying, "A multi-scale local phase quantization plus biomimetic pattern recognition method for SAR automatic target recognition," Progress In Electromagnetics Research, Vol. 135, 105-122, 2013.

10. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multi-band multi-polarized SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001

11. Ren, S., W. Chang, T. Jin, and Z. Wang, "Automated SAR reference image preparation for navigation," Progress In Electromagnetics Research, Vol. 121, 535-555, 2011.
doi:10.2528/PIER11091405

12. Di Bisceglie, M. and C. Galdi, "CFAR detection of extended objects in high-resolution SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 4, 833-843, 2005.
doi:10.1109/TGRS.2004.843190

13. Ai, J., X. Qi, W. Yu, et al. "A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in SAR images," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 7, No. 4, 806-810, 2010.
doi:10.1109/LGRS.2010.2048697

14. Gao, G., "A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 8, No. 3, 557-561, 2011.
doi:10.1109/LGRS.2010.2090492

15. Habib, M. A., M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in non-centered chi-2 gamma clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.
doi:10.2528/PIER08092203

16. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

17. Brekke, C. and S. N. Anfinsen, "Ship detection in ice-infested waters based on dual-polarization SAR imagery," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 8, No. 3, 391-395, 2011.
doi:10.1109/LGRS.2010.2078796

18. Cui, Y., G. Zhou, J. Yang, and Y. Yamaguchi, "On the iterative censoring for target detection in SAR images," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 8, No. 4, 641-645, 2011.
doi:10.1109/LGRS.2010.2098434

19. Budillon, A., A. Evangelista, and G. Schirinzi, "GLRT detection of moving targets via multibaseline along-track interferometric SAR systems," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 9, No. 2, 348-352, 2012.
doi:10.1109/LGRS.2011.2168381

20. Zhang, G. and J.-F. Cao, "Application of extended fractal features in target sized objects detection of SAR image," Journal of Nanjing University of Aeronautics and Astronautics, Vol. 36, No. 3, 378-382, 2004.

21. Tello, M., C. Lopez-Martinez, and J. J. Mallorqui, "A novel algorithm for ship detection in SAR imagery based on the wavelet transform," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 2, No. 2, 201-205, 2005.
doi:10.1109/LGRS.2005.845033

22. Zhang, J., G. Gao, D.-F. Zhou, and J.-J. Huang, "Comparison on two CFAR algorithms of vehicle target detection in SAR images," Signal Processing, Vol. 24, No. 1, 78-82, 2008.

23. Greco, M. S. and F. Gini, "Statistical analysis of high-resolution SAR ground clutter data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 3, 566-575, 2007.
doi:10.1109/TGRS.2006.888141

24. Zhao, Y. W., M. Zhang, X. P. Geng, and P. Zhou, "A comprehensive facet model for bistatic SAR imagery of dynamic ocean scene," Progress In Electromagnetics Research, Vol. 123, 427-445, 2012.
doi:10.2528/PIER11100910

25. Albert, M. D., Y. J. Lee, H. T. Ewe, and H. T. Chuah, "Multilayer model formulation and analysis of radar backscattering from sea ice," Progress In Electromagnetics Research, Vol. 128, 267-290, 2012.

26. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/Mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

27. Frery, A. C., H.-J. MÄuller, et al. "A model for extremely heterogeneous clutter," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 3, 648-659, 1997.
doi:10.1109/36.581981

28. Gao, G., L. Liu, L. Zhao, G. Shi, and G. Kuang, "An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1685-1697, 2009.
doi:10.1109/TGRS.2008.2006504

29. Dong, Y., "Distribution of X-band high resolution and high grazing angle sea clutter,", Defense Science and Technology Organisation, 2006.

30. Ward, K. D., "Compound representation of high resolution sea clutter," Electronics Letters, Vol. 17, No. 16, 561-563, 1981.
doi:10.1049/el:19810394

31. Watts, S., "Radar detection prediction in K-distributed sea clutter and thermal noise," IEEE Transactions on Aerospace and Electronic Systems, Vol. 23, No. 1, 40-45, 1987.
doi:10.1109/TAES.1987.313334

32. Skolnik, M. I., Introduction to Radar Systems, 3rd Edition, McGraw-Hill, New York, 2008.

33. Ward, K. D. and R. J. A. Tough, "Radar detection performance in sea clutter with discrete spikes," International Radar Conference, 253-257, 2002.

34. Watts, S., K. D. Ward, and R. J. A. Tough, "The physics and modeling of discrete spikes in radar sea clutter," Proc. of International Radar Conference, 2005.

35. Anfinsen, S. N. and T. Eltoft, "Application of the matrix-variate Mellin transform to analysis of polarimetric radar images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2281-2295, 2011.
doi:10.1109/TGRS.2010.2103945

36. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proc. of the IEEE International Conference on Neural Networks, 1942-1948, 1995.
doi:10.1109/ICNN.1995.488968

37. Cui, X., T. Potok, and P. Palathingal, "Document clustering using particle swarm optimization," Proc. of the 2005 IEEE on Swarm Intelligence Symposium, 185-191, 2005.

38. Ren, Z. and J. Wang, "New adaptive particle swarm optimization algorithm with dynamically changing inertia weight," Computer Science, Vol. 2, No. 36, 227-229, 2009.

39. Shi, Y. and R. C. Eberhar, "Empirical study of particle swarm optimization," Proc. of the 1999 IEEE on Evolutionary Computation, 1945-1948, 1999.

40. Roberts, W. J. J. and S. Furui, "Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm," IEEE Transactions on Signal Processing, Vol. 48, No. 12, 3303-3306, 2000.
doi:10.1109/78.886993

41. Anastassopoulos, V., G. A. Lampropoulos, A. Drosopoulos, and M. Rey, "High resolution radar clutter statistics," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 1, 43-60, 1999.
doi:10.1109/7.745679

42. Li, H.-C., W. Hong, Y.-R. Wu, and P.-Z. Fan, "An efficient and flexible statistical model based on generalized Gamma distribution for amplitude SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2711-2722, 2010.
doi:10.1109/TGRS.2010.2041239

43. Weinberg, G. V., "An investigation of the Pareto distribution as a model for high grazing angle clutter,", Electronic Warfare-and Radar Division Defense Science and Technology Organization, 2011.