1. Kane, Y., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Okamoto, T., H. Takenaka, T. Nakamura, and T. Aoki, "Large-scale simulation of seismic-wave propagation of the 2011 Tohoku-Oki M9 earthquake," Proc. of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 349, Mar. 1-4, 2012. Google Scholar
3. Hallaj, I. M. and R. O. Cleveland, "FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound," J. Acoust. Soc. Am., Vol. 105, No. 5, L7-L12, 1999.
doi:10.1121/1.426776 Google Scholar
4. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702 Google Scholar
5. Schneider, J. B., "Understanding the finite-difference time-domain method,", www.eecs.wsu.edu/~schneidj/ufdtd, 2012. Google Scholar
6. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Inc., 685 Canton Street Nordwood, MA 02062, 2005.
7. Wang, M.-Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602 Google Scholar
8. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements - A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901 Google Scholar
10. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013. Google Scholar
10. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011. Google Scholar
11. , , , http://www.lumerical.com.
12. , , , http://www.remcom.com/xf7.
doi:10.1109/20.34321
13. , , , http://www.acceleware.com/fdtd-solvers.
doi:10.1002/jnm.1660080314
14. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687702, 2010. Google Scholar
15. , , , http://fdtd.kintechlab.com/ru/start.
16. , , , http://www.angorafdtd.org.
doi:10.2528/PIER11082512
17. Perlik, A. T., T. Opsahl, and A. Ta°ove, "Predicting scattering of electromagnetic fields using FDTD on a connection machine," IEEE Trans. on Magnetics, Vol. 2, No. 4, 2910-2912, 1989.
doi:10.2528/PIER10102707 Google Scholar
18. Chew, K. C. and V. F. Fusco, "A parallel implementation of the finite difference time-domain algorithm," Int. J. Numer. Model. El., Vol. 8, 293-299, 1995. Google Scholar
19. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012. Google Scholar
20. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012. Google Scholar
21. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012. Google Scholar
22. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.1109/ISPDC.2012.17 Google Scholar
23. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011. Google Scholar
24. , , , http://onzafdtd.org.
25. , , , http://sourceforge.net/projects/blitz/.
26. , , , www.top500.org.
27. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013. Google Scholar
28. Dursun, H., K. Nomura, W. Wang, M. Kunaseth, L. Peng, R. Seymour, R. K. Kalia, A. Nakano, and P. Vashishta, "In-core optimization of high-order stencil computations," Proc. PDPTA, 533-538, 2009. Google Scholar
29. Veldhuizen, T. L., "Scientific computing: C++ versus Fortran," Dr. Dobb's Journal of Software Tools, Vol. 22, No. 11, 34, 36, 38, 91, Nov. 1997. Google Scholar
30. , , , http://zsmith.co/bandwidth.html.
31. Zumbusch, G., "Tuning a finite difference computation for parallel vector processors," 2012 11th International Symposium on Parallel and Distributed Computing, CPS, 63-70, IEEE Press, 2012. Google Scholar