1. Zhu, F., S. C. S. Gao, A. T. S. Ho, T. W. C. Brown, J. Li, and J. D. Xu, "Low-profile directional ultra-wideband antenna for see-through-wall imaging applications," Progress In Electromagnetics Research, Vol. 121, 121-139, 2011.
doi:10.2528/PIER11080907 Google Scholar
2. Sun, J. and M. Li, "Life detection and location methods using UWB impulse radar in a coal mine," Mining Science and Technology (China), Vol. 21, 687-691, 2011.
doi:10.1016/j.mstc.2011.03.007 Google Scholar
3. Shaban, H. A., M. Abou El-Nasr, and R. M. Buehrer, "Reference range correlation (RRcR) ranging and performance bounds for on-body UWB-based body sensor networks," Progress In Electromagnetics Research B, Vol. 35, 69-85, 2011.
doi:10.2528/PIERB11082212 Google Scholar
4. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Numerical modelling for ultra wideband radar breast cancer detection and classification," Progress In Electromagnetics Research B, Vol. 34, 145-171, 2011. Google Scholar
5. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705 Google Scholar
6. Zheng, W., Z. Zhao, and Z. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.
doi:10.2528/PIER08101202 Google Scholar
7. Desrumaux, L., M. Lalande, J. Andrieu, V. Bertrand, and B. Jecko, "An innovative radar imaging system based on the capability of an UWB array to steer successively in different directions," Progress In Electromagnetics Research B, Vol. 32, 91-106, 2011.
doi:10.2528/PIERB11053003 Google Scholar
8. Liu, Z., L. Liu, and B. Barrowes, "The application of the Hilbert-Huang transform in through-wall life detection with UWB impulse radar," PIERS Online, Vol. 6, No. 7, 695-699, 2010.
doi:10.2529/PIERS100217122115 Google Scholar
9. Lv, H., G. H. Lu, X. J. Jing, and J. Q. Wang, "A new ultra-wideband radar for detecting survivors buried under earthquake rubbles," Microwave and Optical Technology Letters, Vol. 52, No. 11, 2621-2624, 2010.
doi:10.1002/mop.25539 Google Scholar
10. McGinley, B., M. O'Halloran, R. C. Conceicao, G. Higgins, E. Jones, and M. Glavin, "The effects of compression on ultra wideband radar signals," Progress In Electromagnetics Research, Vol. 117, 51-65, 2011. Google Scholar
11. Sharafi, A. and A. Ahmadian, "Respiration-rate estimation of a moving target using impulse-based ultra wideband radars," Australas Phys. Eng. Sci. Med., Vol. 35, 31-39, 2012.
doi:10.1007/s13246-011-0112-2 Google Scholar
12. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306 Google Scholar
13. Li, Y. F., X. J. Jing, H. Lv, and J. Q. Wang, "Analysis of characteristics of two close stationary human targets detected by impulse radio UWB radar," Progress In Electromagnetics Research, Vol. 126, 429-447, 2012.
doi:10.2528/PIER12011908 Google Scholar
14. Jia, Y., L. Kong, and X. Yang, "A novel approach to target localization through unknown walls for through-the-wall radar imaging," Progress In Electromagnetics Research, Vol. 119, 107-132, 2011.
doi:10.2528/PIER11052402 Google Scholar
15. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302 Google Scholar
16. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408 Google Scholar
17. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011. Google Scholar
18. Li, W. Z., Z. Li, H. Lv, G. H. Lu, Y. Zhang, X. J. Jing, S. Li, and J. Q. Wang, "A new method for non-line-of-sight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar," Progress In Electromagnetics Research, Vol. 133, 535-554, 2013. Google Scholar
19. Anishchenko, L. N., A. S. Bugaev, S. I. Ivashov, and I. A. Vasiliev, "Application of bioradiolocation for estimation of the laboratory animals' movement activity," PIERS Online, Vol. 5, No. 6, 551-554, 2009. Google Scholar
20. Donohue, K. D., D. C. Medonza, E. R. Crane, and B. F. O'Hara, "Assessment of a non-invasive high-throughput classifier for behaviours associated with sleep and wake in mice," BioMedical Engineering Online, Vol. 7, No. 1, 1-14, 2008.
doi:10.1186/1475-925X-7-14 Google Scholar
21. Otero, M., "Application of a continuous wave radar for human gait recognition," Proceedings of SPIE, Signal Processing, Sensor Fusion and Target Recognition, Vol. 5809, 538-548, 2005. Google Scholar
22. Yarovoy, A. G., L. P. Ligthart, J. Matrzas, and B. Levitas, "UWB radar for human being detection," IEEE Aerospace and Electronic Systems Magazine, Vol. 23, No. 5, 36-40, May 2008.
doi:10.1109/MAES.2008.4523914 Google Scholar
23. Shannon, C. E., "A mathematical theory of communication," Bell System Technical Journal, Vol. 27, 379-423, Jul. 1948; 623-656, Oct. 1948. Google Scholar
24. Blanco, S., A. Figliola, R. Quian Quiroga, O. A. Rosso, and E. Serrano, "Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function," Physical Review E, Vol. 57, 932-940, 1998.
doi:10.1103/PhysRevE.57.932 Google Scholar
25. Rosso, O. A., S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schurmann, and E. Basar, "Wavelet entropy: A new tool for analysis of short time brain electrical signals," Journal of Neuroscience Methods, Vol. 105, 65-75, 2001.
doi:10.1016/S0165-0270(00)00356-3 Google Scholar
26. Yordanova, J., V. Kolev, O. A. Rosso, M. Schurmann, O. W. Sakowitz, M. Ozgoren, and E. Basar, "Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance," Journal of Neuroscience Methods, Vol. 117, 99-109, 2002.
doi:10.1016/S0165-0270(02)00095-X Google Scholar
27. Al Nashash, H. A., "Wavelet entropy for subband segmentation of EEG during injury and recovery," Annals of Biomedical Engineering, Vol. 31, 653-658, 2003.
doi:10.1114/1.1575757 Google Scholar
28. Quiroga, R. Q., O. A. Rosso, and E. Basar, "Wavelet entropy: A measure of order in evoked potentials," Electr. Clin. Neurophysiol., Vol. 49, 298-302, 1998. Google Scholar
29. Immoreev, I. and S. Ivashov, "Remote monitoring of human cardio-respiratory system parameters by radar and its applications," Ultrawideband and Ultrashort Impulse Signals, 34-38, Sevastopol, Ukraine, Sep. 15-19, 2008. Google Scholar
30. Singh, S., Q. Liang, D. Chen, and S. Li, "Sense through wall human detection using UWB radar," EURASI Journal on Wireless Communications and Networking, Vol. 2011, No. 20, 1-11, 2011. Google Scholar
32. Zeng, T., C. Mott, D. Mollicone, and L. D. Sanford, "Automated determination of wakefulness and sleep in rats based on non-invasively acquired measures of movement and respiratory activity," Journal of Neuroscience Methods, Vol. 24, 276-287, 2012.
doi:10.1016/j.jneumeth.2011.12.001 Google Scholar