1. Jobsis, F. F., et al. "Non invasive, infrared monitoring of cerebral and myocardial oxygen su±ciency and circulatory parameters," Science, Vol. 198, No. 4323, 1264-1267, 1977.
doi:10.1126/science.929199 Google Scholar
2. Okada, E., et al. "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Applied Optics, Vol. 36, No. 1, 21-31, 1997.
doi:10.1364/AO.36.000021 Google Scholar
3. Boas, D. A., J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Exp., Vol. 10, No. 3, 159-170, 2002.
doi:10.1364/OE.10.000159 Google Scholar
4. Fukui, Y., Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Applied Optics, Vol. 42, No. 16, 2881-2887, 2003.
doi:10.1364/AO.42.002881 Google Scholar
5. Villringer, A. and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci, Vol. 20, No. 10, 435-442, 1997.
doi:10.1016/S0166-2236(97)01132-6 Google Scholar
6. Deply, D. T., M. Cope, et al. "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol., Vol. 33, 1433-1422, 1988. Google Scholar
7. Bashkatov, A. N., E. A. Genina, et al. "Optical properties of human cranial bone in the spectral range from 800 to 2000 nm," Proc. of SPIE, Vol. 6163, No. 616310, 1-11, 2005.. Google Scholar
8. Yaroslavsky, A. N., P. C. Schulze, and I. V. Yaroslavsky, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol., Vol. 47, 2059-2073, 2002.
doi:10.1088/0031-9155/47/12/305 Google Scholar
9. Custo, A., W. M. Wells III, and A. H. Barnett, "Effective scattering coefficient of the cerebral spinal °uid in adult head models for diffuse optical imaging," Applied Optics, Vol. 45, No. 19, 4747-4755, 2008.
doi:10.1364/AO.45.004747 Google Scholar
10. Genina, E. A., A. N. Bashkatov, and V. V. Tuchin, "Optical clearing of cranial bone," Advanced in Optical Technologies, Vol. 2008, No. 10, 2008. Google Scholar
11. Wilson, B. C. and G. Adam, "A Monte Carlo model for the absorption and flux distributions of light in tissue," Med. Phys., Vol. 10, No. 6, 824-830, 1983.
doi:10.1118/1.595361 Google Scholar
12. Wang, L., S. Jaques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Meth. Prog. Biol., Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F Google Scholar
13. Dai, Y., W. Liu, and X. B. Xu, "A monte carlo mpsted analysis of scattering from cylinders buried below a random periodic rough surface," Progress In Electromagnetics Research B, Vol. 47, 179-202, 2013. Google Scholar
14. Paez, E., M. A. Azpurua, C. Tremola, and R. C. Callarotti, "Uncertainty estimation in complex permittivity measurements by shielded dielectric resonator technique using the monte carlo method," Progress In Electromagnetics Research B, Vol. 41, 101-119, 2012. Google Scholar
15. Gargama, H., S. K. Chaturvedi, and A. K. Thakur, "On the Design and reliability analysis of electromagnetic absorbes using real-coded genetic algorithm and monte carlo simulation ," Progress In Electromagnetics Research B, Vol. 43, 169-187, 2012. Google Scholar
16. Hiraoka, M., M. Firbank, and M. Essenpreis, "A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol., Vol. 38, 1859-1876, 1993.
doi:10.1088/0031-9155/38/12/011 Google Scholar
17. Fang, Q. and D. A. Boas, "Monte Carlo simulation of photon migration in 3Dturbid media accelerated by graphics processing units," Opt. Exp., Vol. 17, No. 22, 20178-20190, 2009.
doi:10.1364/OE.17.020178 Google Scholar
18. Okada, E., M. Firbank, and D. T. Deply, "The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy," Phys. Med. Biol., Vol. 40, 2093-2108, 1995.
doi:10.1088/0031-9155/40/12/007 Google Scholar
19. Mcgreevy, R. L. and L. Pusztai, "Reverse Monte Carlo simulation: A new technique for the determination of disordered structures," Molecular Simulation, Vol. 1, 359-367, 1988.
doi:10.1080/08927028808080958 Google Scholar
20. Aslin, R. N. and J. Mehler, "Near-infrared spectroscopy for functional studies of brain activity in human infants: Promise, prospects, and challenges," Journal of Biomedical Optics, Vol. 10, No. 1, 011009, 2005.
doi:10.1117/1.1854672 Google Scholar
21. Hadfield, R. H., "Single-photon detectors for optical quantum information applications," Nature Phtonics, Vol. 3, 696-705, 2009.
doi:10.1038/nphoton.2009.230 Google Scholar
22. Schmidt, F. E., Development of a time-resolved optical tomography system for neonatal brain imaging, Ph.D. thesis, 163-64, University of London, 1999.
23. Song, Y. W., S. Y. Set, and S. Yamashita, "1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes," IEEE Photonics Technology Letters, Vol. 17, No. 8, 1623-1625, 2005.
doi:10.1109/LPT.2005.850883 Google Scholar
24. Horton, N. G., K. Wang, and C. Xu, "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, 205-209, 2013.
doi:10.1038/nphoton.2012.336 Google Scholar