1. Chen, X., J. Chen, C. Liu, and K. Huang, "A genetic metamaterial and its application to gain improvement of a patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1977-1985, 2012.
doi:10.1080/09205071.2012.723674 Google Scholar
2. Deng, J. Y., L. X. Guo, and J. H. Yang, "Narrow band notches for ultra-wideband antenna using electromagnetic band-gap structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2320-2327, 2011.
doi:10.1163/156939311798806211 Google Scholar
3. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506 Google Scholar
4. Zhang, F., V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, "Coupling effect for dielectric metamaterial dimer," Progress In Electromagnetics Research, Vol. 132, 587-601, 2012. Google Scholar
5. Yan, S. and G. A. E. Vandenbosch, "Increasing the NRI bandwidth of dielectric sphere-based metamaterials by coating," Progress In Electromagnetics Research, Vol. 132, 1-23, 2012. Google Scholar
6. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269 Google Scholar
7. Costa, F. and A. Monorchio, "Multiband electromagnetic wave absorber based on reactive impedance ground planes," IET Microwaves, Antennas & Propagation, Vol. 4, 1720-1727, 2010.
doi:10.1049/iet-map.2009.0359 Google Scholar
8. Li, L., S. Lei, and C. H. Liang, "Ultra-low profile high-gain Fabry-Perot resonant antennas with fishnet superstrate," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5-6, 806-816, 2012.
doi:10.1080/09205071.2012.710809 Google Scholar
9. Li, Y. and K. P. Esselle, "Small EBG resonator high-gain antenna using in-phase highly-reflecting surface," Electronics Letters, Vol. 45, 1058-1060, 2009.
doi:10.1049/el.2009.0959 Google Scholar
10. Guo, W., L. He, B. Li, T. Teng, and X. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2012. Google Scholar
11. Segovia-Vargas, D., F. J. Herraiz-Martínez, E. Ugarte-Muñz, L. E. García-Muñoz, and V. González-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading," Progress In Elec- tromagnetics Research, Vol. 133, 91-115, 2012. Google Scholar
12. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012. Google Scholar
13. Tiang, J. J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011. Google Scholar
14. Foroozesh, A. and L. Shafai, "Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement," Canadian Journal of Electrical and Computer Engineering, Vol. 33, 87-98, 2008.
doi:10.1109/CJECE.2008.4621833 Google Scholar
15. Dewan, R., S. K. A. Rahim, S. F. Ausordin, H. U. Iddi, and M. Z. Z. A. Aziz, "X-polarization array antenna with parallel feeding for WiMAX 3.55 GHz application," IEEE International RF and Microwave Conference, 368-372, 2011.
16. Kordalivand, A. M. and T. A. Rahman, "Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method," Progress In Electromagnetics Research, Vol. 137, 599-619, 2013. Google Scholar
17. Mohamadi Monavar, F. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305 Google Scholar
18. Gujral, M., J. L. W. Li, T. Yuan, and C. W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807 Google Scholar
19. Gebril, K. K., S. K. A. Rahim, and A. Y. Abdulrahman, "Bandwidth enhancement and miniaturization of dielectric resonator an- tenna for 5.8 GHz WLAN," Progress In Electromagnetics Research C, Vol. 19, 179-189, 2011. Google Scholar
20. Jeong, G.-T., W.-S. Kim, and K.-S. Kwak, "Dual-band Wi-Fi antenna with a ground stub for bandwidth enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1036-1039, 2012.
doi:10.1109/LAWP.2012.2214755 Google Scholar
21. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 128, 101-120, 2012.
doi:10.2528/PIER11112101 Google Scholar
22. Abbasi, N. A. and R. J. Langley, "Multiband-integrated antenna/artificial magnetic conductor," IET Microwaves, Antennas & Propagation, Vol. 5, 711-717, 2011.
doi:10.1049/iet-map.2010.0200 Google Scholar
23. De Cos, M. E., Y. Ávarez, R. Hadarig, and F. Las-Heras, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505 Google Scholar
24. De Cos, M. E., Y. Ávarez, and F. Las-Heras, "Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC," Microwave and Optical Technology Letters, Vol. 53, 1372-1377, 2011.
doi:10.1002/mop.25974 Google Scholar