1. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, London, UK, 2009.
doi:10.2200/S00102ED1V01Y200807CEM012
2. Araujo, M. G., J. M. Taboada, J. Rivero, and F. Obelleiro, "Comparison of surface integral equations for left-handed materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110 Google Scholar
3. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
4. Wilton, D. R., J. S. Lin, and S. M. Rao, "A novel technique to calculate the electromagnetic scattering by surfaces of arbitrary shape," URSI Radio Science Meeting Dig., 24, Los Angeles, CA, Jun. 1981. Google Scholar
5. Eibert, T. F., "Iterative-solver convergence for loop-star and loop-tree decompositions in method-of-moments solutions of the electric-field integral equation," IEEE Antennas Propag. Mag., Vol. 46, 80-85, Jun. 2004.
doi:10.1109/MAP.2004.1374101 Google Scholar
6. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas Propag., Vol. 47, 339-346, Feb. 1999.
doi:10.1109/8.761074 Google Scholar
7. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propag., Vol. 48, 1635-1645, Oct. 2000.
doi:10.1109/8.899680 Google Scholar
8. Yeom, J.-H., H. Chin, H.-T. Kim, and K.-T. Kim, "Block matrix preconditioner method for the electric field integral equation (EFIE) formulation based on loop-star basis functions," Progress In Electromagnetics Research, Vol. 134, 543-558, 2013. Google Scholar
9. Lee, J. F., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Trans. Antennas Propag., Vol. 51, 1855-1863, Aug. 2003.
doi:10.1109/TAP.2003.814736 Google Scholar
10. Christiansen, S. H. and J. C. Nedelec, "A preconditioner for the electric field integral equation based on Calderón formulas," SIAM J. Numer. Anal., Vol. 40, 1100-1135, Sep. 2002.
doi:10.1137/S0036142901388731 Google Scholar
11. Yan, S., J. M. Jin, and Z. Nie, "EFIE analysis of low-frequency problems with loop-star decomposition and Calderón multiplicative preconditioner," IEEE Trans. Antennas Propag., Vol. 58, 857-867, Mar. 2010.
doi:10.1109/TAP.2009.2039336 Google Scholar
12. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderón preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788 Google Scholar
13. Buffa, A. and S. H. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5 Google Scholar
14. Valdes, F., F. P. Andriulli, K. Cools, and E. Michielssen, "High-order div- and quasi curl-conforming basis functions for Calderón multiplicative preconditioning of the EFIE," IEEE Trans. Antennas Propag., Vol. 59, 1321-1337, Apr. 2011.
doi:10.1109/TAP.2011.2109692 Google Scholar
15. Andriulli, F. P., A. Tabacco, and G. Vecchi, "Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns," IEEE Trans. Antennas Propag., Vol. 58, 1614-1624, May 2010.
doi:10.1109/TAP.2010.2044325 Google Scholar
16. Qian, Z. G. and W. C. Chew, "An augmented electric field integral equation for high-speed interconnect analysis," Microw. Opt. Technol. Lett., Vol. 50, 2658-2662, Oct. 2008.
doi:10.1002/mop.23736 Google Scholar
17. Qian, Z. G. and W. C. Chew, "Enhanced A-EFIE with perturbation method," IEEE Trans. Antennas Propag., Vol. 58, 3256-3264, Oct. 2010.
doi:10.1109/TAP.2010.2055795 Google Scholar
18. Chen, Y. P., L. J. Jiang, Z. G. Qian, and W. C. Chew, "An augmented electric field integral equation for layered medium Green's function," IEEE Trans. Antennas Propag., Vol. 59, 960-968, Mar. 2011.
doi:10.1109/TAP.2010.2103042 Google Scholar
19. Yan, S., J. M. Jin, and Z. P. Nie, "Analysis of electrically large problems using the augmented EFIE with a Calderón preconditioner," IEEE Trans. Antennas Propag., Vol. 59, 2303-2314, Jun. 2011.
doi:10.1109/TAP.2011.2143672 Google Scholar
20. Pan, Y. C. and W. C. Chew, "A fast multipole method for embedded structure in a stratified medium," Progress In Electromagnetics Research, Vol. 44, 1-38, 2004.
doi:10.2528/PIER03050602 Google Scholar
21. Ergul, O. and L. Gurel, "Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104 Google Scholar
22. Bogaert, I., J. Peeters, and D. De Zutter, "Error control of the vectorial nondirective stable plane wave multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 111, 271-290, 2011.
doi:10.2528/PIER10090604 Google Scholar
23. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203 Google Scholar
24. Wang, W. and N. Nishimura, "Calculation of shape derivatives with periodic fast multipole method with application to shape optimization of metamaterials," Progress In Electromagnetic Research, Vol. 127, 46-64, 2012. Google Scholar
25. Gope, D., A. Ruehli, and V. Jandhyala, "Solving low-frequency EM-CKT problems using the PEEC method," IEEE Transactions on Advanced Packaging, Vol. 30, No. 2, May 2007.
doi:10.1109/TADVP.2007.896000 Google Scholar
26. Jiang, L. J. and A. Ruehli, "On the frequency barrier of surface integral equations from a circuit point of view," Progress In Electromagnetics Research Symposium Abstracts, 46, Cambridge, USA, Jul. 5-8, 2010. Google Scholar
27. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011. Google Scholar
28. Song, Z., F. Dai, D. Su, S. Xie, and F. Duval, "Reduced PEEC modeling of wire-ground structures using a selective mesh approach," Progress In Electromagnetics Research, Vol. 123, 355-370, 2012.
doi:10.2528/PIER11112109 Google Scholar
29. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley India Pvt Ltd., 2007.
30. Nevels, R. D. and K. J. Crowell, "A Coulomb gauge analysis of a wire scatterer," IEE Proc., Pt. H, Vol. 137, 384-388, Dec. 1990. Google Scholar
31. Bladel, J., Electromagnetic Field, 3rd Ed., Wiley-Interscience, 2007.
32. Chew, W. C., E. Michielssen, J. M. Song, and J. M. Jin, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Inc., Norwood, MA, 2001.
33. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, Jul. 1986. Google Scholar
34. Chu, Y. H. and W. C. Chew, "Large-scale computation for electrically small structures using surface-integral equation method," Microw. Opt. Technol. Lett., Vol. 47, No. 6, 525-530, Dec. 20, 2005.
doi:10.1002/mop.21219 Google Scholar
35. http://www.ansys.com/Products/Simulation.