Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-23
Structure Preserving SAR Image Despeckling via L0-Minimization
By
Progress In Electromagnetics Research, Vol. 141, 347-367, 2013
Abstract
In this paper, we propose a new method for Synthetic Aperture Radar (SAR) image despeckling via L0-minimization strategy, which aims to smooth homogeneous areas while preserving significant structures in SAR images. We argue that the gradients of the despeckled images are sparse and can be pursued by L0-norm minimization. We then formularize the despeckling of SAR images as a global L0 optimization problem with ratio-of-average operations. Namely, the number of pixels with ratio-of-average that are unequal to one is controlled to approximate prominent structures in a sparsity-control manner. Finally, a numerical algorithm is also employed to solve the L0 optimization problem. In contrast with existing SAR image despeckling approaches, this strategy is applied without necessity to consider the local features or structures. The performance of our method is tested on high resolution X-band SAR images. The experimental results show the effectiveness of the proposed method in SAR image filtering. It outperforms many typical despeckling techniques in terms of the equivalent-number-of-looks and the edge- preserve-index. It also has some advantages compared with the existing state-of-the-art despeckling filters.
Citation
Gang Liu, Wen Yang, Gui-Song Xia, and Mingsheng Liao, "Structure Preserving SAR Image Despeckling via L0-Minimization," Progress In Electromagnetics Research, Vol. 141, 347-367, 2013.
doi:10.2528/PIER13041503
References

1. Koo, V. C., Y. K. Chan, G. Vetharatnam, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress n Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

2. Fan, C., X.-T. Huang, T. Jin, J.-G. Yang, and D. X. An, "Novel pre-processing techniques for coherence improving in along-track dual-channel low frequency SAR," Progress In Electromagnetics Research, Vol. 128, 171-193, 2012.

3. Ren, S., W. Chang, T. Jin, and Z. Wang, "Automated SAR reference image preparation for navigation," Progress In Electromagnetics Research, Vol. 121, 535-555, 2011.
doi:10.2528/PIER11091405

4. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

5. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101

6. Lee, J. S., "Refined filtering of image noise using local statistics," Computer Graphics and Image Processing, Vol. 15, No. 4, 380-389, 1981.
doi:10.1016/S0146-664X(81)80018-4

7. Deledalle, C., L. Denis, and F. Tupin, "Iterative weighted maximum likelihood denoising with probabilistic patch-based weights," IEEE Trans. on Image Processing, Vol. 18, No. 12, 2661-2672, 2009.
doi:10.1109/TIP.2009.2029593

8. Parrilli, S., M. Poderico, C. Angelino, and L. Verdoliva, "A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage," IEEE Trans. on Geoscience and Remote Sensing, Vol. 50, No. 2, 606-616, 2012.
doi:10.1109/TGRS.2011.2161586

9. Cheng, J., G. Gao, W. Ding, X. Ku, and J. Sun, "An improved scheme for parameter estimation of G° distribution model in high-resolution SAR images," Progress In Electromagnetics Research, Vol. 134, 23-46, 2013.

10. Wang, Y., J. Yang, W. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction," SIAM Journal on Imaging Sciences, Vol. 1, No. 3, 248-272, 2008.
doi:10.1137/080724265

11. Xu, L., C. Lu, Y. Xu, and J. Jia, "Image smoothing via l0 gradient minimization," ACM Trans. on Graphics, Vol. 30, No. 6, 174, 2011.

12. Touzi, R., A. Lopes, and P. Bousquet, "A statistical and geometrical edge detector for SAR images," IEEE Trans. on Geoscience and Remote Sensing, Vol. 26, No. 6, 764-773, 1988.
doi:10.1109/36.7708

13. Lee, J. S., J.-H. Wen, T. L. Ainsworth, K.-S. Chen, and A. J. Chen, "Improved sigma filter for speckle filtering of SAR imagery," IEEE Trans. on Geoscience and Remote Sensing, Vol. 47, No. 1, 202-213, 2009.
doi:10.1109/TGRS.2008.2001637

14. Gagnon, L. and A. Jouan, "Speckle filtering of sar images: A comparative study between complex-wavelet-based and standard filters," SPIE Proceedings, Wavelet Applications in Signal and Image Processing V, Vol. 3169, 80-87, 1997.
doi:10.1117/12.279681

15. Espinoza-Molina, D., D. Gleich, and M. Datcu, "Evaluation of bayesian despeckling and texture extraction methods based on Gauss-Markov and auto-binomial gibbs random fields: Application to TerraSAR-X data," IEEE Trans. on Geoscience and Remote Sensing, Vol. 50, No. 5, 2001-2025, 2012.
doi:10.1109/TGRS.2011.2169679

16. Iqbal, M., J. Chen, W. Yang, P. Wang, and B. Sun, "SAR image despeckling by selective 3D filtering of multiple compressive reconstructed images," Progress In Electromagnetics Research, Vol. 134, No. 12, 209-226, 2013.

17. Lee, J. S., L. urkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, "Speckle filtering of synthetic aperture radar images: A review," Remote Sensing Reviews, Vol. 8, No. 4, 313-340, 1994.
doi:10.1080/02757259409532206

18. Foucher, S., G. B. Benie, and J.-M. Boucher, "Multiscale MAP filtering of SAR images," IEEE Transactions on Image Processing, Vol. 10, No. 1, 49-60, Jan. 2001.
doi:10.1109/83.892442

19. Achim, A., P. Tsakalides, and A. Bezerianos, "SAR image denoising via bayesian wavelet shrinkage based on heavy-tailed modeling," IEEE Trans. on Geoscience and Remote Sensing, Vol. 41, No. 8, 1773-1784, 2003.
doi:10.1109/TGRS.2003.813488

20. Gleich, D. and M. Datcu, "Wavelet-based despeckling of SAR images using Gauss-Markov random fields," IEEE Trans. on Geoscience and Remote Sensing, Vol. 45, No. 12, 4127-4143, 2007.
doi:10.1109/TGRS.2007.906093

21. Shensa, M., "The discrete wavelet transform: Wedding the a trous and mallat algorithms," IEEE Trans. on Signal Processing, Vol. 40, No. 10, 2464-2482, 1992.
doi:10.1109/78.157290

22. Argenti, F. and L. Alparone, "Speckle removal from SAR images in the undecimated wavelet domain," IEEE Trans. on Geoscience and Remote Sensing, Vol. 40, No. 11, 2363-2374, 2002.
doi:10.1109/TGRS.2002.805083

23. Sveinsson, J. R. and J. A. Benediktsson, "Almost translation invariant wavelet transformations for speckle reduction of SAR images," IEEE Trans. on Geoscience and Remote Sensing, Vol. 41, No. 10, 2404-2408, 2003.
doi:10.1109/TGRS.2003.817844

24. Ranjani, J. J. and S. J. Thiruvengadam, "Dual-tree complex wavelet transform based SAR despeckling using interscale dependence," IEEE Trans. on Geoscience and Remote Sensing, Vol. 48, No. 6, 2723-2731, 2010.
doi:10.1109/TGRS.2010.2041241

25. Lee, J.-S., "Speckle suppression and analysis for synthetic aperture radar images," Optical Engineering, Vol. 25, No. 5, 636-643, 1986.
doi:10.1117/12.7973877

26. Frost, V., J. Stiles, K. Shanmugan, and J. Holtzman, "A model for radar images and its application to adaptive digital filtering of multiplicative noise," IEEE Trans. on Pattern Analysis and, Vol. 4, No. 2, 157-166, 1982.
doi:10.1109/TPAMI.1982.4767223

27. Kuan, D., D., A. Sawchuk, T. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, 165-177, 1985.
doi:10.1109/TPAMI.1985.4767641

28. Lopes, A., R. Touzi, and E. Nezry, "Adaptive speckle filters and scene heterogeneity," IEEE Trans. on Geoscience and Remote Sensing, Vol. 28, No. 6, 992-1000, 1990.
doi:10.1109/36.62623

29. Baraldi, A. and F. Parmiggiani, "A refined gamma map SAR speckle filter with improved geometrical adaptivity," IEEE Trans. on Geoscience and Remote Sensing, Vol. 33, No. 5, 1245-1257, 1995.
doi:10.1109/36.469489

30. Xie, H., L. Pierce, and F. Ulaby, "SAR speckle reduction using wavelet denoising and Markov random field modeling," IEEE Trans. on Geoscience and Remote Sensing, Vol. 40, No. 10, 2196-2212, 2002.
doi:10.1109/TGRS.2002.802473

31. Buades, A., B. Coll, and J. Morel, "A non-local algorithm for image denoising," Proc. Computer Vision and Pattern Recognition, Vol. 2, 60-65, 2005.

32. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

33. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

34. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

35. Yang, W., Y. Liu, G.-S. Xia, and X. Xu, "Statistical mid-level features for building-up area extraction from full polarimetric SAR imagery," Progress In Electromagnetics Research, Vol. 132, 233-254, 2012.

36. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multi-band multi-polarized SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001

37. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

38. Jin, Y.-Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing - A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.
doi:10.2528/PIER10020101