1. Li, Q. Y. and S. W. Ren, "A real-time visual inspection system for discrete surface defects of rail heads," IEEE Transactions on Instrumentation and Measurement, Vol. 61, 2189-2199, 2012.
doi:10.1109/TIM.2012.2184959 Google Scholar
2. Rowshandel, H., G. L. Nicholson, C. L. Davis, and C. Roberts, "A robotic system for non-destructive evaluation of RCF cracks in rails using an ACFM sensor," 5th IET, 29-30, 2011. Google Scholar
3. Papaelias, M., C. Roberts, and C. L. Davis, "A review on non-destructive evaluation of rails: State-of-the-art and future development," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 222, 367-384, 2008.
doi:10.1243/09544097JRRT209 Google Scholar
4. Clark, R., S. Singh, and C. Haist, "Ultrasonic characterisation of defects in rails," Insight, Vol. 44, 341-347, 2002. Google Scholar
5. Edwards, R., S. Dixon, and X. Jian, "Characterisation of defects in the railhead using ultrasonic surface waves," NDT & E. Int., Vol. 39, 468-475, 2006.
doi:10.1016/j.ndteint.2006.01.005 Google Scholar
6. Cacciola, M., F. C. Morabito, D. Polimeni, and M. Versaci, "Fuzzy characterization of flawed metallic plates with eddy current tests," Progress In Electromagnetics Research, Vol. 72, 241-252, 2007.
doi:10.2528/PIER07031301 Google Scholar
7. Watson, S., R. J. Williams, W. A. Gough, and H. Griffiths, "A magnetic induction tomography system for samples with conductivities less than 10 Sm-1," Measurement Science & Technology, Vol. 19, 045501, 2008.
doi:10.1088/0957-0233/19/4/045501 Google Scholar
8. Yin, W. L. and A. J. Peyton, "Simultaneous measurements of thickness and distance of a thin metal plate with an electromagnetic sensor using a simplified model," IEEE Transactions on Instrumentation and Measurement, Vol. 53, 1335-1338, 2004.
doi:10.1109/TIM.2004.830585 Google Scholar
9. Yin, W. L., A. J. Peyton, G. Zysko, and R. Denno, "Simultaneous noncontact measurement of water-level and conductivity," IEEE Transactions on Instrumentation and Measurement, Vol. 57, 2665-2669, 2008.
doi:10.1109/TIM.2008.926054 Google Scholar
10. Ma, L., H.-Y. Wei, and M. Soleimani, "Planar magnetic induction tomography for 3D near subsurface imaging," Progress In Electromagnetics Research, Vol. 138, 65-82, 2013. Google Scholar
11. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513 Google Scholar
12. Wei, H.-Y. and M. Soleimani, "Four dimensional reconstruction using magnetic induction tomography: Experimental study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012. Google Scholar
13. Ma, X., A. J. Peyton, S. R. Higson, A. Lyons, and S. J. Dickinson, "Hardware and software design for an electromagnetic electro-magnetic induction tomography (EMT) system for high contrast metal process applications," Measurement Science & Technology, Vol. 17, 111-118, 2006.
doi:10.1088/0957-0233/17/1/018 Google Scholar
14. Griffiths, H., "Magnetic induction tomography," Measurement Science & Technology, Vol. 12, 1126-1131, 2001.
doi:10.1088/0957-0233/12/8/319 Google Scholar
15. Wei, H.-Y. and M. Soleimani, "Two-phase low conductivity flow imaging using magnetic induction tomography," Progress In Electromagnetics Research, Vol. 131, 99-115, 2012. Google Scholar
16. Wu, K. L., G. Y. Delisle, D. G. Fang, and M. Lecours, "Coupled finite element and boundary element methods in electromagnetic scattering," Progress In Electromagnetics Research, Vol. 02, 113-132, 1990. Google Scholar
17. Liao, S. and R. J. Vernon, "On the image approximation for electromagnetic wave propagation and PEC scattering in cylindrical harmonics," Progress In Electromagnetics Research, Vol. 66, 65-88, 2006.
doi:10.2528/PIER06083002 Google Scholar
18. Sun, K. L., K. O'Neill, F. Shubitidze, S. A. Haider, and K. D. Paulsen, "Simulation of electromagnetic induction scattering from targets with negligible to moderate penetration by primary fields," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 910-927, 2002.
doi:10.1109/TGRS.2002.1006372 Google Scholar
19. Pham, M. H. and A. J. Peyton, "A model for the forward problem in magnetic induction tomography using boundary integral equations," IEEE Transactions on Magnetics, Vol. 44, 2262-2267, 2008.
doi:10.1109/TMAG.2008.2003142 Google Scholar
20. Morrison, J. A., "Integral equations for electromagnetic scattering by perfect conductors with two-dimensional geometry," Bell Syst. Tech. J., Vol. 58, 409-425, 1979.
doi:10.1002/j.1538-7305.1979.tb02226.x Google Scholar
21. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Transactions on Antennas and Propagation, Vol. 41, 1448-1455, 1993.
doi:10.1109/8.247786 Google Scholar
22. Graglia, R. D., "Static and dynamic potential integrals for linearly varying source distributions in two- and three-dimensional problems," IEEE Transactions on Antennas and Propagation, Vol. 35, 662-669, 1987.
doi:10.1109/TAP.1987.1144160 Google Scholar
23. Zhang, Z. M. and Y. R. Den, "A new method using Biot-Savart law to derive magnetic scalar potential notation," Journal of Chongqing Institute of Civil Engineering and Architecture, Vol. 4, 99-103, 1985. Google Scholar