Vol. 140
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-31
Electronically Reconfigurable Beam Steering Antenna Using Embedded RF PIN Based Parasitic Arrays (Erppa)
By
Progress In Electromagnetics Research, Vol. 140, 241-261, 2013
Abstract
In this paper, an electronically reconfigurable beam steering antenna using embedded RF PIN switches based parasitic array (ERPPA) is proposed for modern wireless communication systems that operate at 5.8 GHz frequency. In the proposed antenna, a single driven element is fed by a coaxial probe, while each of the two parasitic elements is integrated with an RF PIN switches that embedded inside the substrate. In the conventional reconfigurable antennas, the RF PIN switches are mounted on narrow slots created on the top or bottom layer of the radiator/parasitic elements, which could lead to the dimensional changes of the antenna and degrade the performance in terms of beam steering and return loss. However, this research proposes an exclusive solution where the RF PIN diodes at parasitic elements are embedded inside the substrate thus no additional slots have to be created to mount the SMCs on the antenna. In this regard, the proposed antenna is highly competent to eliminate the intermodulation effect generated by the RF PIN diodes and the other passive elements associated with the PIN diodes. In this research, extensive investigations revealed that the parasitic element dimension and the selection of RF PIN switches significantly influence the antenna's beam steering capability. Adopting certain ON/OFF condition of the embedded RF switches, three beam-steering angles of -30°, 0° and +30° are achieved in the xz-plane, with measured peak gains at θ = -30°, 0° and +30° are 6.5 dBi, 6.5 dBi and 4.9 dBi, respectively. The fabricated antenna with Taconic substrate provides a good agreement with the simulation result. Furthermore, the performance of ERPPA is further tested by outdoor measurement using a wireless bridging system to verify the functionality of the designed antenna at the angles of -45°, -30°, -15°, 0°, 15°, 30° and 45°. The analysis with the switched diversity combining scheme has demonstrated that a maximum diversity gain approximately of 12 dBi is offered by the proposed antenna. With a compact dimension of 32 mm by 76 mm, the proposed antenna is a potential candidate in point-to-point wireless applications such as WIFI application.
Citation
Thennarasan Sabapathy Mohd Faizal Bin Jamlos Raad Badlishah Ahmad Muzammil Jusoh Mohd Ilman Jais Muhammad Ramlee Kamarudin , "Electronically Reconfigurable Beam Steering Antenna Using Embedded RF PIN Based Parasitic Arrays (Erppa)," Progress In Electromagnetics Research, Vol. 140, 241-261, 2013.
doi:10.2528/PIER13042906
http://www.jpier.org/PIER/pier.php?paper=13042906
References

1. Sanyal, S. K., Q. M. Alfred, and T. Chakravarty, "A novel beam-switching algorithm for programmable phased array antenna," Progress In Electromagnetics Research, Vol. 60, 187-196, 2006.
doi:10.2528/PIER05122502

2. Expósito-Domínguez, G., J.-M. Fernández González, P. Padilla de la Torre, and M. Sierra-Castañer, "Dual circular polarized steering antenna for satellite communications in x band," Progress In Electromagnetics Research, Vol. 122, 61-76, 2012.
doi:10.2528/PIER11100501

3. Yuan, T., N. Yuan, J. L.-W. Li, and M.-S. Leong, "Design and analysis of phased antenna array with low sidelobe by fast algorithm," Progress In Electromagnetics Research, Vol. 87, 131-147, 2008.
doi:10.2528/PIER08092401

4. Jusoh, M., M. F. B. Jamlos, M. R. Kamarudin, T. Sabapathy, M. I. Jais, and M. A. Jamlos, "A fabrication of intelligent spiral reconfigurable beam forming antenna for 2.35-2.39 GHz applications and path loss measurements," Progress In Electromagnetics Research, Vol. 138, 115-131, 2013.

5. Jais, M. I., M. F. B. Jamlos, M. Jusoh, T. Sabapathy, M. R. Kamarudin, R. B. Ahmad, A. A. A.-H. Azremi, E. I. Bin Azmi, P. J. Soh, and G. A. E. V, "A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications," Progress In Electromagnetics Research, Vol. 138, 613-627, 2013.

6. Kang, W., K. H. Ko, and K. Kim, "A compact beam reconfigurable antenna for symmetric beam switching," Progress In Electromagnetics Research, Vol. 129, 1-16, 2012.

7. Peng, H.-L., W.-Y. Yin, J.-F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilities ," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
doi:10.2528/PIER11042905

8. Ojefors, E., C. Shi, K. From, I. Skarin, P. Hallbjorner, and A. Rydberg, "Electrically steerable single-layer microstrip traveling wave antenna with varactor diode based phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 55, 2451-2460, 2007.
doi:10.1109/TAP.2007.904104

9. Petit, L., L. Dussopt, and J. M. Laheurte, "MEMS-switched parasitic-antenna array for radiation pattern diversity," IEEE Transactions on Antennas and Propagation, Vol. 54, 2624-2631, 2006.
doi:10.1109/TAP.2006.880751

10. Jamlos, M. F., T. A. Rahman, M. R. Kamarudin, P. Saad, O. A. Aziz, and M. A. Shamsudin, "Adaptive beam steering of rlsa antenna with RFID technology," Progress In Electromagnetics Research, Vol. 108, 65-80, 2010.
doi:10.2528/PIER10071903

11. Zhang, S., G. H. Huff, J. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array," IEEE Transactions on Antennas and Propagation, Vol. 52, 2773-2776, 2004.
doi:10.1109/TAP.2004.834372

12. Preston, S. L., D. V. Thiel, J. W. Lu, S. G. O'Keefe, and T. S. Bird, "Electronic beam steering using switched parasitic patch elements," Electronics Letters, Vol. 33, 7-8, 1997.
doi:10.1049/el:19970048

13. Ha, S.-J. and C.-W. Jung, "Reconfigurable beam steering using a microstrip patch antenna with a u-slot for wearable fabric applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1228-1231, 2011.
doi:10.1109/LAWP.2011.2174022

14. Li, Z., H. Mopidevi, O. Kaynar, and B. A. Cetiner, "Beam-steering antenna based on parasitic layer," Electronics Letters, Vol. 48, 59-60, 2012.
doi:10.1049/el.2011.2787

15. Zhao, S.-C., B.-Z. Wang, and W. Shao, "Reconfigurable Yagi-Uda substrate for RCS reduction of patch antenna," Progress In Electromagnetics Research B, Vol. 11, 173-187, 2009.
doi:10.2528/PIERB08120101

16. Nair, S. and M. J. Ammann, "Reconfigurable antenna with elevation and azimuth beam switching," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 367-370, 2010.
doi:10.1109/LAWP.2010.2049332

17. Boudaghi, H., M. Azarmanesh, and M. Mehranpour, "A frequency-reconfigurable monopole antenna using switchable slotted ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 655-658, 2012.
doi:10.1109/LAWP.2012.2204030

18. Jose, S., HPND-4005 beam lead PIN diode, Datasheet, Avago Technologies, CA, 2006.

19. Rizzi, P. A., Microwave Engineering: Passive Circuits, Prentice Hall, 1988.

20. Silicon PIN diodes, BAR-50, Infineon Technologies AG, Munich, Germany, 2009.

21. Kamarudin, M. R., Y. I. Nechayev, and P. S. Hall, "Onbody diversity and angle-of-arrival measurement using a pattern switching antenna ," IEEE Transactions on Antennas and Propagation, Vol. 57, 964-971, 2009.
doi:10.1109/TAP.2009.2014597

22. Sabapathy, T., S. W. Tan, and T. C. Chuah, "Fuzzy weight controller based cell-site diversity for rain fading mitigation in LMDS networks in the tropics," Progress In Electromagnetics Research B, Vol. 28, 235-251, 2011.

23. Lempiainen, J. J. A. and K. I. Nikoskinen, "Signal correlations and diversity gain of two-beam microcell antenna," IEEE Transactions on Vehicular Technology, Vol. 47, 755-765, 1998.
doi:10.1109/25.704831