1. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999 Google Scholar
2. Garcia-Vidal, F., J., L. Martin-Moreno, J. B. Pendry, and , "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97, 2005.
doi:10.1088/1464-4258/7/2/013 Google Scholar
3. Jiang, T., L. Shen, X. Zhang, and L.-X. Ran, "High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces," Progress In Electromagnetics Research M, Vol. 8, 91-102, 2009.
doi:10.2528/PIERM09062901 Google Scholar
4. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 2, 754-764, Jan. 2010.
doi:10.1364/OE.18.000754 Google Scholar
5. Nesterov, M. L., D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Geometrically induced modification of surface plasmons in the optical and telecom regimes," Opt. Lett., Vol. 35, No. 3, 423-425, Feb. 2010.
doi:10.1364/OL.35.000423 Google Scholar
6. Martin-Cano, D., O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Waveguided spoof surface plasmons with deep-subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, Dec. 2011.
doi:10.1364/OL.36.004635 Google Scholar
7. Rotman, W., "A study of single-surface corrugated guides," Proceedings of the IRE, Vol. 39, No. 8, 952-959, Aug. 1951.
doi:10.1109/JRPROC.1951.273719 Google Scholar
8. Hougardy, R. and R. Hansen, "Scanning surface wave antennas-oblique surface waves over a corrugated conductor," IRE Transactions on Antennas and Propagation, Vol. 6, No. 4, 370-376, Oct. 1958.
doi:10.1109/TAP.1958.1144619 Google Scholar
9. Encinar, J., "Mode-matching and point-matching techniques applied to the analysis of metal-strip-loaded dielectric antennas," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 9, 1405-1412, Sep. 1990.
doi:10.1109/8.56992 Google Scholar
10. Guglielmi, M. and G. Boccalone, "A novel theory for dielectricin-set waveguide leaky-wave antennas," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 497-504, Apr. 1991.
doi:10.1109/8.81463 Google Scholar
11. Grbic, A. and G. Eleftheriades, "Leaky CPW-based slot antenna arrays for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1494-1504, Nov. 2002.
doi:10.1109/TAP.2002.804259 Google Scholar
12. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 340-347, Feb. 2010.
doi:10.1109/TAP.2009.2026593 Google Scholar
13. Neto, A., "UWB, non dispersive radiation from the planarly fed leaky lens antenna, Part 1: Theory and design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2238-2247, Jul. 2010.
doi:10.1109/TAP.2010.2048879 Google Scholar
14. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., Vol. 216, 398-410, 1968. Google Scholar
15. Kretschmann, E., "The determination of the optical constants of metals by excitation of surface plasmons," Z. Phys., Vol. 241, 313-324, 1971. Google Scholar
16. Lucyszyn, S. and Y. Zhou, "Characterising room temperature THz metal shielding using the engineering approach," Progress In Electromagnetics Research, Vol. 103, 17-31, 2010.
doi:10.2528/PIER10030801 Google Scholar
17. Lucyszyn, S. and Y. Zhou, "Engineering approach to modelling frequency dispersion within normal metals at room temperature for THz applications," Progress In Electromagnetics Research, Vol. 101, 257-275, 2010.
doi:10.2528/PIER09121506 Google Scholar
18. Mineo, M. and C. Paoloni, "Comparison of THz backward wave oscillators based on corrugated waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 163-171, 2011. Google Scholar
19. Matvejev, V., C. D. Tandt, W. Ranson, J. Stiens, R. Vounckx, and D. Mangelings, "Integrated waveguide structure for highly sensitive THz spectroscopy of nano-liter liquids in capillary tubes," Progress In Electromagnetics Research, Vol. 121, 89-101, 2011.
doi:10.2528/PIER11090102 Google Scholar
20. Treizebre, A., S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet, "THz power divider circuits on planar goubau lines (PGLs)," Progress In Electromagnetics Research C, Vol. 26, 219-228, 2012.
doi:10.2528/PIERC11112409 Google Scholar
21. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1537-1544, Oct. 1990.
doi:10.1109/8.59765 Google Scholar
22. Rajo-Iglesias, E., E., M. Caiazzo, L. Inclan-Sanchez, and P.-S. Kildal, "Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces," IET Microwaves, Antennas Propagation, Vol. 1, No. 1, 184-189, Feb. 2007.
doi:10.1049/iet-map:20050327 Google Scholar
23. Quevedo-Teruel, O., L. Inclan-Sanchez, and E. Rajo-Iglesias, "Soft surfaces for reducing mutual coupling between loaded PIFA antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 91-94, 2010.
doi:10.1109/LAWP.2010.2043632 Google Scholar
24. Skobelev, S. P. and P.-S. Kildal, "A new type of the quasi-TEM eigenmodes in a rectangular waveguide with one corrugated hard wall," Progress In Electromagnetics Research, Vol. 102, 143-157, 2010.
doi:10.2528/PIER09122305 Google Scholar
25. Neto, A., S. Monni, and F. Nennie, "UWB, non dispersive radiation from the planarly fed leaky lens antenna, Part II: Demonstrators and measurements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2248-2258, Jul. 2010.
doi:10.1109/TAP.2010.2048880 Google Scholar