1. Kock, W. E., "Metal-lens antennas," Proceedings of the IRE, Vol. 34, 828-836, 1946.
doi:10.1109/JRPROC.1946.232264 Google Scholar
2. Yaokun, Q., "Dielectric lens antenna with scan reflector," IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, 98-101, 1997.
doi:10.1109/7.570712 Google Scholar
3. Free, W., F. Cain, C. Ryan, Jr., C. Burns, and E. Turner, "High-power constant-index lens antennas," IEEE Transactions on Antennas and Propagation, Vol. 22, 582-584, 1974.
doi:10.1109/TAP.1974.1140839 Google Scholar
4. Tang, C., "A dual lens antenna for limited electronic scanning," IEEE Antennas and Propagation Society International Symposium, 117-120, Urbana, IL, 1975. Google Scholar
5. Olver, A. D. and B. Philips, "Integrated lens with dielectric horn antenna," Electronics Letters, Vol. 29, 1150-1152, 1993.
doi:10.1049/el:19930769 Google Scholar
6. Pavacic, A. P., D. L. del Rio, J. R. Mosig, and G. V. Eleftheriades, "Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, 604-612, 2006.
doi:10.1109/TAP.2005.863143 Google Scholar
7. Abella, C., M. Marin, J. Vazquez, J. Peces, J. A. Romera, R. Graham, et al. "Artificial dielectric lens antennas: Assessment of their potential for space applications," 23rd European Microwave Conference, 896-898, Madrid, Spain, 1993.
doi:10.1109/EUMA.1993.336742 Google Scholar
8. Al-Joumayly, M. A. and N. Behdad, "Wideband planar microwave lenses using sub-wavelength spatial phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 59, 4542-4552, 2011.
doi:10.1109/TAP.2011.2165515 Google Scholar
9. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
11. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902(4), 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
12. Wu, Q., P. Pan, F. Y. Meng, L. W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A - Materials Science and Processing, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9 Google Scholar
13. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011. Google Scholar
14. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Physical Review E, Vol. 71, Mar. 2005. Google Scholar
15. Driscoll, T., D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, et al. "Free-space microwave focusing by a negative-index gradient lens," Applied Physics Letters, Vol. 88, 081101(3), 2006.
doi:10.1063/1.2174088 Google Scholar
16. Goldflam, M. D., T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, et al. "Reconfigurable gradient index using VO2 memory metamaterials," Applied Physics Letters, Vol. 99, 044103(3), Jul. 25, 2011. Google Scholar
17. Paul, O., B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, "Gradient index metamaterial based on slot elements," Applied Physics Letters, Vol. 96, 241110(3), Jun. 14, 2010. Google Scholar
18. Ruopeng, L., C. Qiang, J. Y. Chin, J. J. Mock, C. Tie Jun, and D. R. Smith, "Broadband gradient index microwave quasioptical elements based on non-resonant metamaterials," Optics Express, Vol. 17, 21030-21041, 2009.
doi:10.1364/OE.17.021030 Google Scholar
19. Ruopeng, L., Y. Xin Mi, J. G. Gollub, J. J. Mock, C. Tie Jun, and D. R. Smith, "Gradient index circuit by waveguided metamaterials," Applied Physics Letters, Vol. 94, 073506(3), Feb. 16, 2009. Google Scholar
20. Smith, D. R., Y.-J. Tsai, and S. Larouche, "Analysis of a gradient index metamaterial blazed diffraction grating," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1605-1608, 2011.
doi:10.1109/LAWP.2011.2179632 Google Scholar
21. Yang, X. M., X. Y. Zhou, Q. Cheng, H. F. Ma, and T. J. Cui, "Diffuse reflections by randomly gradient index metamaterials," Optics Letters, Vol. 35, 808-810, Mar. 15, 2010.
doi:10.1364/OL.35.000808 Google Scholar
22. Liu, Z.-G., R. Qiang, and Z.-X. Cao, "A novel broadband Fabry-Perot resonator antenna with gradient index metamaterial superstrate," IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting, 1-4, Toronto, 2010. Google Scholar
23. Lei, M. Z. and C. T. Jun, "Experimental realization of a broadband bend structure using gradient index metamaterials," Optics Express, Vol. 17, 18354-18363, Sep. 28, 2009. Google Scholar
24. Chen, X., H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials," Journal of Applied Physics, Vol. 110, 044904(8), Aug. 15, 2011. Google Scholar
25. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Applied Physics Letters, Vol. 95, 094107(3), Aug. 31, 2009. Google Scholar
26. Mei, Z. L., J. Bai, and T. J. Cui, "Gradient index metamaterials realized by drilling hole arrays," Journal of Physics D - Applied Physics, Vol. 43, 055404(6), Feb. 10, 2010. Google Scholar
27. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, Vol. 1, 124(6), Nov. 2010. Google Scholar
28. Zhou, B., Y. Yang, H. Li, and T. J. Cui, "Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials," Journal of Applied Physics, Vol. 110, 084908(6), 2011. Google Scholar
29. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nature Communications, Vol. 1, 21(6), 06/01/online, 2010. Google Scholar
30. Liu, Z. J., S. W. Yang, and Z. P. Nie, "A dielectric lens antenna design by using the effective medium theories," International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1-4, Chendu, China, 2010. Google Scholar
31. Petosa, A., A. Ittipiboon, and S. Thirakoune, "Investigation on arrays of perforated dielectric fresnel lenses," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 153, 270-276, 2006.
doi:10.1049/ip-map:20050193 Google Scholar
32. Teshirogi, T. and T. Yoneyama, Modern Millimeter-wave Technologies, IOS Press, Burke, VA, USA, 2001.
33. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov,A. Sevastyanov, and V. Ssorin , "2D electronically beam steerable integrated lens antennas for mm-wave applications," 42nd European Microwave Conference (EuMC), 213-216, Amsterdam, the Netherlands, 2012. Google Scholar