1. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, Jan. 1962.
doi:10.1364/JOSA.52.000116 Google Scholar
3. Tseng, N. and W. D. Burnside, "A very efficient RCS data compression and reconstruction technique,", Tech. Rep. No. 722780-4, ElectroSci. Lab, Ohio State University, Columbus, 1992. Google Scholar
3. Wang, Y. and H. Ling, "A model-based angular extrapolation technique for iterative method-of-moments solvers," Microwave and Optical Technology Letters, Vol. 20, No. 4, 229-233, Feb. 1999.
doi:10.1002/(SICI)1098-2760(19990220)20:4<229::AID-MOP3>3.0.CO;2-L Google Scholar
4. Gupta, I. J., M. J. Beals, and A. Moghaddar, "Data extrapolation for high resolution radar imaging," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 11, 1540-1545, Nov. 1994.
doi:10.1109/8.362783 Google Scholar
5. Zhang, X., J. Qin, and G. Li, "SAR target classification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013. Google Scholar
6. Kim, K.-T. and H.-T. Kim, "One-dimensional scattering centre extraction for efficient radar target classification," IEE Proc. - Radar, Sonar and Navigation, Vol. 146, No. 3, 147-158, Jun. 1999.
doi:10.1049/ip-rsn:19990321 Google Scholar
7. Sdeedly, W. M. and R. L. Moses, "High resolution exponential modeling of fully polarized radar returns," IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 3, 459-469, May 1991.
doi:10.1109/7.81427 Google Scholar
8. McClure, M., R. C. Qiu, and L. Carin, "On the superresolution identification of observables from swept-frequency scattering data," IEEE Transactions on Antennas Propagations, Vol. 45, No. 4, 631-641, Apr. 1997.
doi:10.1109/8.564089 Google Scholar
9. Potter, L. C., D.-M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Transactions on Antennas and Propagations, Vol. 43, No. 10, 1058-1067, Oct. 1995.
doi:10.1109/8.467641 Google Scholar
10. Bo, H. Y., "Estimating two-dimensional frequencies by matrix enhancement and matrix pencil," IEEE Transactions on Signal Processing, Vol. 40, No. 9, 2267-2280, Sep. 1992.
doi:10.1109/78.157226 Google Scholar
11. Chen, F. J. and C. Carrson, "Estimation of two-dimensional frequencies using modified matrix pencil method," IEEE Transactions on Signal Processing, Vol. 55, No. 2, 718-724, Jan. 2007.
doi:10.1109/TSP.2006.885813 Google Scholar
12. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas Propagations, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
13. Jiang, J., F. Duan, and J. Chen, "Three-dimensional localization algorithm for mixed near-field and far-field sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research, Vol. 136, 435-456, 2013. Google Scholar
14. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276 Google Scholar
15. Stoica, P. and Y. Selen, "Model-order selection: A review of information criterion rules," IEEE Signal Processing Magazine, Vol. 21, No. 4, 36-47, Jul. 2004.
doi:10.1109/MSP.2004.1311138 Google Scholar
16. Donoho, D., "Compress sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
17. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, Feb. 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
18. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012. Google Scholar
19. Herman, M. and T. Strohmer, "High-resolution radar via compressive sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, Jun. 2009.
doi:10.1109/TSP.2009.2014277 Google Scholar
20. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "A compressive sensing data acquisition and imaging method for stepped frequency GPRs," IEEE Transactions on Signal Processing, Vol. 57, No. 7, 2640-2650, Jul. 2009.
doi:10.1109/TSP.2009.2016270 Google Scholar
21. Huang, Q., L. Qu, B. Wu, and G. Fang, "UWB through-wall imaging based on compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1408-1415, Mar. 2010.
doi:10.1109/TGRS.2009.2030321 Google Scholar
22. Li, J., S. S. Zhang, and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307 Google Scholar
23. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
24. Zhang, L., M. Xing, C. Qiu, et al. "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, 567-571, Jun. 2009.
doi:10.1109/LGRS.2009.2021584 Google Scholar
25. Baraniuk, R. G., "A lecture on compressive sensing," IEEE Signal Processing Magazine, Vol. 24, No. 4, 118-121, Jul. 2007.
doi:10.1109/MSP.2007.4286571 Google Scholar
26. Mallat, S. and Z. Zhang, "Matching pursuit with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, Dec. 1993.
doi:10.1109/78.258082 Google Scholar
27. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. Inf. Theory, Vol. 55, No. 5, 2230-2249, May 2009.
doi:10.1109/TIT.2009.2016006 Google Scholar
28. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4666, Dec. 2007.
doi:10.1109/TIT.2007.909108 Google Scholar
29. M. Grant, M. and S. Boyd, " Grant," , CVX: Matlab Software for Disciplined Convex Programming (Web Pag-e and Software), 2011, Available: http://stanford.edu/ boyd/cvx.
doi:10.1109/TGRS.2010.2048575 Google Scholar
30. Zhang, L., M. Xing, C. Qiu, et al. "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, Oct. 2010. Google Scholar
31. Wang, M. and W. Xu, "On the performance of sparse recovery via lp-minimization (0 ≤ p ≤1)," IEEE Trans. Inf. Theory, Vol. 57, No. 10, 7255-7278, Oct. 2011.
doi:10.1109/TIT.2005.858979 Google Scholar
32. Candes, E. J. and T. Tao, "Decoding by linear programming," IEEE. Trans. Inf. Theory, Vol. 51, No. 12, 4203-4215, Dec. 2005.
doi:10.1109/LGRS.2012.2188093 Google Scholar
33. Browne, K. E. and R. J. Burkholder, "Non-linear optimization of through-wall radar images via the lagrange multiplier method," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 5, 803-807, Sep. 2012. Google Scholar
34. Burkholder, R. J., A. N. O'Donnell, W. O. Coburn, and C. J. Reddy, "Sparse basis expansion for compressive sensing of electromagnetic scattering patterns computed using iterative physical optics," 2012 International Conference on Electromagnet ics in Advanced Applications (ICEAA 2012), Cape Town, South Africa, Sep. 2-7, 2012. Google Scholar