Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-28
A Dual-Band RF Energy Harvesting Using Frequency Limited Dual-Band Impedance Matching
By
Progress In Electromagnetics Research, Vol. 141, 443-461, 2013
Abstract
In this paper, a novel dual-band RF-harvesting RF-DC converter with a frequency limited impedance matching network (M/N) is proposed. The proposed RF-DC converter consists of a dual-band impedance matching network, a rectifier circuit with a villard structure, a wideband harmonic suppression low-pass filter (LPF), and a termination load. The proposed dual-band M/N can match two receiving band signals and suppress the out-of-band signals effectively, so the back-scattered nonlinear frequency components from the nonlinear rectifying diodes to the antenna can be blocked. The fabricated circuit provides the maximum RF-DC conversion efficiency of 73.76% and output voltage of 7.09 V at 881 MHz and 69.05% with 6.86 V at 2.4 GHz with an individual input signal power of 22 dBm. Moreover, the conversion efficiency of 77.13% and output voltage of 7.25 V are obtained when two RF waves with input dual-band signal power of 22 dBm are fed simultaneously.
Citation
Phirun Kim, Girdhari Chaudhary, and Yongchae Jeong, "A Dual-Band RF Energy Harvesting Using Frequency Limited Dual-Band Impedance Matching," Progress In Electromagnetics Research, Vol. 141, 443-461, 2013.
doi:10.2528/PIER13061704
References

1. Marincic, A. S., "Nikola tesla and the wireless transmission of energy," IEEE Trans. Power Apparatus and Systems, Vol. 101, No. 10, 4064-4068, Oct. 1982.

2. Ali, M., G. Yang, and R. Dougal, "A new circularly polarized rectenna for wireless power transmission and data communication," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 205-208, 2005.
doi:10.1109/LAWP.2005.851004

3. Monti, G., F. Congedo, D. De Donno, and L. Tarricone, "Monopole-based rectenna for microwave energy harvesting of UHF RFID systems," Progress In Electromagnetics Research C, Vol. 31, 109-121, 2012.

4. Huang, W., B. Zhang, X. Chen, K. Huang, and C. Liu, "Study on an S-band rectenna arrays for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.

5. Park, J. Y., S. M. Han, and T. Itoh, "A rectenna design with harmonic-rejecting circular-sector antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 52-54, 2004.
doi:10.1109/LAWP.2004.827889

6. Ren, Y. J. and K. Chang, "New 5.8-GHz circularly polarized etrodirective rectenna arrays for wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 7, 2970-2976, Jul. 2006.

7. Olgum, U., C. C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371

8. Shinohara, N. and H. Matsumoto, "Experimental study of large rectenna array for microwave energy transmission," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 3, 261-268, Mar. 1998.
doi:10.1109/22.661713

9. Chaudhary, G., P. Kim, Y. Jeong, and J. H. Yoon, "Design of high efficiency RF-DC conversion circuit using novel termination networks for RF energy harvesting system," Microwave Opt. Techno. Lett., Vol. 54, No. 10, 2330-2335, Oct. 2012.
doi:10.1002/mop.27087

10. Gao, Y. Y., X. X. Yang, C. Jiang, and J. Y. Zhou, "A circularly polarized rectenna with low profile for wireless power transmission," Progress In Electromagnetics Research Letters, Vol. 13, 41-49, 2010.
doi:10.2528/PIERL09111805

11. Shao, X., B. Li, N. Shahshahan, N. Goldsman, T. S. Salter, and G. M. Metze, "A planar dual-band antenna design for RF energy harvesting applications," International Semicon. Device Research Symposium, 1-2, 2011.

12. Li, B., X. Shao, N. Shahshahn, N. Goldsman, T. S. Salter, and G. M. Metze, "Antenna-coupled dual band RF energy harvester design," International Semicon. Device Research Symposium (Student Paper), 1-2, 2011.
doi:10.1889/1.3621270

13. Suh, Y. H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 1784-1789, Jul. 2002.
doi:10.1109/TMTT.2002.800430

15. Ren, Y. J., M. F. Farooqui, and K. Chang, "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Trans. Anten. Propag., Vol. 55, No. 7, 2110-2113, Jul. 2007.
doi:10.1109/TAP.2007.900275

16. Pavone, D., A. Buonanno, M. D'Urso, and F. Corte, "Design considerations for radio frequency energy harvesting devices," Progress In Electromagnetics Research B, Vol. 31, 19-35, 2012.

17. Chang, S. H., W. J. Liao, K. W. Peng, and C. Y. Hsieh, "A Franklin array antenna for wireless charging applications," PIERS Online, Vol. 6, No. 4, 340-344, 2010.
doi:10.2529/PIERS090904050641

18. Zhang, J. W., X. Y. Zhang, Z. L. Chen, K. Y. See, C. M. Tan, and S. S. Chen, "On-chip RF energy harvesting circuit for image sensor," IEEE 13th Int. Sympo. Integ. Circuit, 420-423, 2011.

19. Lin, P. M. and L. O. Chua, "Topological generation and analysis of voltage multiplier circuits," IEEE Trans. Circuits and Systems, Vol. 24, No. 10, 517-530, Oct. 1977.
doi:10.1109/TCS.1977.1084273

20. Park, S., H. Choi, and Y. Jeong, "Microwave group delay time adjuster using parallel resonator," IEEE Microwave and Wireless Components Letter, Vol. 17, No. 2, 109-111, Feb. 2007.
doi:10.1109/LMWC.2006.890331

21. Mbombolo, S. E. F. and C. W. Park, "An improved detector topology for a rectenna," IEEE Microwave Workshop Series Innovative Wireless Power Transmission, 23-26, 2011.

22. Riviere, S., F. Alicalapa, A. Douyere, and J. D. Lan Sun Luk, "A compact rectenna device at low power level," Progress In Electromagnetics Research C, Vol. 16, 137-146, 2010.
doi:10.2528/PIERC10071604

23. Pozar, D. M., Microwave Engineering, 4th Edition, 415-416, Wiley, New York, 2012.