Vol. 142
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-25
Miniaturized 0.3-6 GHz LTCC Six-Port Receiver for Software Defined Radio
By
Progress In Electromagnetics Research, Vol. 142, 591-613, 2013
Abstract
The six-port architecture reemerges from the search of low-cost, multi-band and multi-standard transceivers. Its inherent advantages, especially its broadband behavior, make this a structure a good candidate to implement a Software Defined Radio (SDR). However, broadband six-port network designs lead to large size circuits, especially for operating frequencies in the lower gigahertz region. New technologies must be explored in order to achieve compact size and low-cost productions for configurable radio terminals and mobile communication applications. In this paper, the Low Temperature Co-fired Ceramic (LTCC) technology is proposed for implementing a broadband six-port receiver. A compact (30 mm × 30 mm × 1.25 mm) four-octave LTCC sixport receiver is presented. Experimental demodulation results show a good performance over the frequency range from 0.3 to 6 GHz. The demodulation of up to 15.625 Msymbol/s signals, i.e., 93.6 Mbps for 64-QAM, has been satisfactorily performed, with a measured Error Vector Magnitude (EVM) value of 3.7%.
Citation
Cristina de la Morena-Álvarez-Palencia, Mateo Burgos-Garcia, and Javier Gismero-Menoyo, "Miniaturized 0.3-6 GHz LTCC Six-Port Receiver for Software Defined Radio," Progress In Electromagnetics Research, Vol. 142, 591-613, 2013.
doi:10.2528/PIER13070806
References

1. Mohaer, M., A. Mohammadi, and A. Adipour, "Direct conversion receivers using multi-port structures for software defined radio systems," IET Microw. Antennas & Propag., Vol. 1, No. 2, 363-372, Apr. 2007.
doi:10.1049/iet-map:20050260

2. Bosisio, R. G., Y. Y. Zhao, X. Y. Xu, S. Abielmona, E. Moldovan, Y. S. Xu, M. Bozzi, S. O. Tatu, C. Nerguizian, J. F. Frigon, C. Caloz, and K.Wu, "New-wave radio," IEEE Microw. Magazine, Vol. 9, No. 1, 89-100, 2008.
doi:10.1109/MMM.2007.910923

3. Koelpin, A., G. Vinci, B. Laemmle, D. Kissinger, and R. Weigel, "The six-port in modern society," IEEE Microw. Magazine, Vol. 11, No. 7, 35-43, Dec. 2010.
doi:10.1109/MMM.2010.938584

4. Khaddaj Mallat, N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60 GHz direct conversion receivers," Progress In Electromagnetics Research, Vol. 84, 437-449, 2008.
doi:10.2528/PIER08081003

5. De la Morena-Alvarez-Palencia, C. and M. Burgos-Garcia, "Experimental performance comparison of six-port and conventional zero-IF/low-IF receivers for software defined radio," Progress In Electromagnetics Research B, Vol. 42, 311-333, 2012.

6. Osth, J., A. Serban, Owais, M. Karlsson, S. Gong, J. Haartsen, and P. Karlsson, "Six-port gigabit demodulator," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 1, 125-131, Jan. 2010.
doi:10.1109/TMTT.2010.2091198

7. De la Morena-Alvarez-Palencia, C. and M. Burgos-Garcia, "Four-octave six-port receiver and its calibration for broadband communications and software defined radios," Progress In Electromagnetics Research, Vol. 116, 1-21, 2011.

8. De la Morena-Alvarez-Palencia, C., M. Burgos-Garcia, and D. Rodriguez-Aparicio, "Three octave six-port network for a broadband software radio receiver," European Microwave Conf., 1110-1113, Paris, France, 2010.

9. Xu, Y. and R. G. Bosisio, "On the real time calibration of six-port receivers (SPRs)," Microw. Opt. Technol. Lett., Vol. 20, No. 5, 318-322, 1999.
doi:10.1002/(SICI)1098-2760(19990305)20:5<318::AID-MOP11>3.0.CO;2-1

10. Neveux, G., B. Huyart, and G. J. Rodriguez-Guisantes, "Wide-band RF receiver using the five-port' technology," IEEE Trans. Vehicular Technology, Vol. 53, No. 5, 1441-1451, Sep. 2004.
doi:10.1109/TVT.2004.832392

11. De la Morena-Alvarez-Palencia, C., M. Burgos, and J. Gismero-Menoyo, "Contribution of LTCC technology to the miniaturization of six-port networks," European Microw. Conf., 659-662, Manchester, UK, Oct. 2011.

12. Cristal, E. G. and L. Young, "Theory and tables of optimum symmetrical TEM-mode coupled-transmission-line directional couplers," IEEE Trans. Microwave Theory Tech., Vol. 13, 544-558, Sep. 1965.
doi:10.1109/TMTT.1965.1126050

13. Cohn, S. B., "A class of broadband three-port TEM mode hybrids," IEEE Trans. Microw. Theory Tech., Vol. 16, No. 3, 110-116, Feb. 1968.
doi:10.1109/TMTT.1968.1126617

14. Perez-Lara, P., J. A. Medina-Rodriguez, I. Molina-Fernandez, J. G. Wanguemert-Perez, and A. Gonzalez-Salguero, "Wideband homodyne six-port receiver with high LO-RF isolation," IET Microw. Antennas Propag., Vol. 3, No. 5, 882-888, 2009.
doi:10.1049/iet-map.2008.0288

15. Xiong, X. Z. and V. F. Fusco, "Wideband 0.9 GHz to 5 GHz six-port and its application as digital modulation receiver," IET Microw. Antennas Propag., Vol. 150, No. 4, 301-307, Aug. 2003.
doi:10.1049/ip-map:20030465

16. Tatu, S. O., K. Wu, and T. Denidni, "Multiband multiport direct conversion receiver: Design, implementation and demodulation results," Microw. Optical Technology Lett., Vol. 48, No. 4, 817-822, Apr. 2006.
doi:10.1002/mop.21484

17. Haddadi, K., H. El Aabbaoui, C. Loyez, D. Glay, N. Rolland, and T. Lasri, "Wide-band 0.9 GHz to 4 GHz four-port receiver," IEEE Int. Conf. Electron. Circuits and Systems, 1316-1319, Nice, France, Dec. 2006.

18. Hakansson, P. and S. Gong, "Ultra-wideband six-port transmitter and receiver pair 3.1-4.8 GHz," Asia-Pacific Microw. Conf., 1-4, Hong Khong/Macau, China, Dec. 2008.

19. Haddadi, K., M. M.Wang, C. Loyez, D. Glay, and T. Lasri, "Four-port communication receiver with digital IQ-regeneration," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 58-60, Jan. 2010.
doi:10.1109/LMWC.2009.2035969

20. Winter, S. M., A. Koelpin, and R. Weigel, "Six-port receiver analog front-end: Multilayer design and system simulation," IEEE Trans. Circuits Sist. II, Vol. 55, No. 3, 254-258, Mar. 2008.
doi:10.1109/TCSII.2008.918999

21. Moscoso-Martir, A. and I. Molina-Fernandez, "Six-port junction with complete UWB band coverage in multilayer technology," European Microwave Conf., 655-658, Manchester, UK, Oct. 2011.

22. Peng, H., Z. Yang, and T. Yang, "Design and implementation of an ultra-wideband six-port network," Progress In Electromagnetics Research, Vol. 131, 293-310, 2012.

23. Fang, X. T., X.-C. Zhang, and C.-M. Tong, "A novel miniaturized microstrip six-port junction," Progress In Electromagnetics Research Letters, Vol. 23, 129-135, 2011.