1. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," Advances in Optics and Photonics, Vol. 1, No. 3, 438-483, 2009.
doi:10.1364/AOP.1.000438 Google Scholar
2. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193
3. Smajic, J., C. Hafner, and D. Erni, "Design and optimization of an achromatic photonic crystal bend," Opt. Express, Vol. 11, No. 12, 1378-1384, 2003.
doi:10.1364/OE.11.001378 Google Scholar
4. Stewart, M. E., C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, "Nanostructured plasmonic sensors," Chemical Reviews, Vol. 108, No. 2, 494-521, 2008.
doi:10.1021/cr068126n Google Scholar
5. Sannomiya, T., C. Hafner, and J. Voros, "In situ sensing of single binding events by localized surface plasmon resonance," Nano Letters, Vol. 8, No. 10, 3450-3455, 2008.
doi:10.1021/nl802317d Google Scholar
6. Sannomiya, T., C. Hafner, and J. Voros, "Plasmonic nanoparticle based biosensing: Experiments and simulations," Proc. SPIE Plasmonics: Nanoimaging, Nanofabrication, and Their Applications V, Vol. 7395, 73950M, 2009.
doi:10.1117/12.824683 Google Scholar
7. Kong, J. A., Electromagnetic Wave Theory, Wiley, New York, 1986.
8. Ihlenburg, F., Finite Element Analysis of Acoustic Scattering, Springer, Berlin & Heidelberg, Germany, 1998.
doi:10.1007/b98828
9. Givoli, D., Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam and New York, 1992.
10. Bonnet-BenDhia, A.-S., G. Dakhia, C. Hazard, and L. Chorfi, "Diffraction by a defect in an open waveguide: A mathematical analysis based on a modal radiation condition," SIAM J. Appl. Math., Vol. 70, No. 3, 677-693, Jul. 2009. Google Scholar
11. Ciraolo, G. and R. Magnanini, "A radiation condition for uniqueness in a wave propagation problem for 2-D open waveguides," Math. Meth. Appl. Sci., Vol. 32, No. 10, 1183-1206, 2009.
doi:10.1002/mma.1084 Google Scholar
12. Bonnet-BenDhia, A.-S., B. Goursaud, and C. Hazard, "Mathematical analysis of the junction of two acoustic open waveguides," SIAM J. Appl. Math., Vol. 71, 2048-2071, 2011. Google Scholar
13. Jeresz-Hanckes, C. and J.-C. Nedelec, "Asymptotics for Helmoltz and Maxwell solutions in 3-D open waveguides," Commun. Comput. Phys., Vol. 11, No. 2, 629-646, Feb. 2012. Google Scholar
14. Schmidt, F., "A new approach to coupled interior-exterior Helmholtz-type problems: Theory and algorithms,", Habilitation Thesis, Free University Berlin, Germany, 2002. Google Scholar
15. Aksun, M. I. and G. Dural, "Clarification of issues on the closed-form Green's functions in stratified media," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3644-3653, 2005.
doi:10.1109/TAP.2005.858571 Google Scholar
16. Sauter, S. and C. Schwab, "Boundary Element Methods," Springer-Verlag, Heidelberg, 2011. Google Scholar
17. Alparslan, A., M. I. Aksun, and K. A. Michalski, "Closed-form Green's functions in planar layered media for all ranges and materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 3, 602-613, 2010.
doi:10.1109/TMTT.2010.2040354 Google Scholar
18. Alparslan, A. and C. Hafner, "Using layered geometry Green's functions in the multiple multipole program," Journal of Computational and Theoretical Nanoscience, Vol. 8, No. 8, 1600-1608, 2011.
doi:10.1166/jctn.2011.1854 Google Scholar
19. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
20. Jin, J.-M. and W. C. Chew, "Combining PML and ABC for the finite-element analysis of scattering problems," Microwave and Optical Technology Letters, Vol. 12, No. 4, 192-197, 1996.
doi:10.1002/(SICI)1098-2760(199607)12:4<192::AID-MOP4>3.0.CO;2-B Google Scholar
21. Chew, W. C., W. H. Weedon, and A. Sezginer, "A 3-D perfectly matched medium by coordinate stretching and its absorption of static fields," Applied Computational Electromagnetics Symposium Digest, Vol. 1, 482-489, Citeseer, 1995. Google Scholar
22. Bermudez, A., L. Hervella-Nieto, and A. Prieto, "An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems," Journal of Computational Physics, Vol. 223, No. 2, 469-488, 2007.
doi:10.1016/j.jcp.2006.09.018 Google Scholar
23. Collino, F. and P. Monk, "The perfectly matched layer in curvilinear coordinat," SIAM Journal on Scientific Computing, Vol. 19, No. 6, 2061-2090, 1998.
doi:10.1137/S1064827596301406 Google Scholar
24. Zschiedrich, L., R. Klose, A. SchÄadle, and F. Schmidt, "A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions," Journal of Computational and Applied Mathematics, Vol. 188, No. 1, 12-32, 2006.
doi:10.1016/j.cam.2005.03.047 Google Scholar
25. Chen, Z. and H. Wu, "An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures," SIAM J. Numer. Anal., Vol. 41, No. 3, 799-826, 2003.
doi:10.1137/S0036142902400901 Google Scholar
26. Bao, G., Z. Chen, and H. Wu, "Adaptive finite-element method for diffraction gratings," JOSA A, Vol. 22, No. 6, 1106-1114, 2005.
doi:10.1364/JOSAA.22.001106 Google Scholar
27. Michler, C., L. Demkowicz, J. Kurtz, and D. Pardo, "Improving the performance of perfectly matched layers by means of hp-adaptivity," Numerical Methods for Partial Differential Equations, Vol. 23, No. 4, 832-858, 2007.
doi:10.1002/num.20252 Google Scholar
28. Zschiedrich, L., "Transparent boundary conditions for Maxwell's equations,", Ph.D. Thesis, FU Berlin, Berlin, Germany, Nov. 2009. Google Scholar
29. Nannen, L. and A. Schadle, "Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities," Wave Motion, Vol. 48, No. 2, 116-129, 2011.
doi:10.1016/j.wavemoti.2010.09.004 Google Scholar
30. Kettner, B. and F. Schmidt, "The pole condition as transparent boundary condition for resonance problems: Detection of spurious modes," Proc. SPIE, Vol. 7933, 79331B-1-79331B-11, 2011. Google Scholar
31. Kettner, B., "Detection of spurious modes in resonance mode computations --- Pole condition method,", Ph.D. Thesis, FU Berlin, Berlin, Germany, Jul. 2012. Google Scholar
32. Schwab, C., p- and hp-finite Element Methods: Theory and Applications in Solid and Fluid Mechanisms, Oxford University Press, Oxford, UK, 1998.
33. Ainsworth, M., "Discrete dispersion relation for hp-version finite element approximation at high wave number," SIAM J. Numer. Anal., Vol. 42, No. 2, 553-575, 2005.
doi:10.1137/S0036142903423460 Google Scholar
34. Melenk, J. M. and S. Sauter, "Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichletto-Neumann boundary conditions," Math. Comp., Vol. 79, No. 272, 1871-1914, 2010.
doi:10.1090/S0025-5718-10-02362-8 Google Scholar
35. Melenk, J. M. and S. Sauter, "Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation," SIAM J. Numer. Anal., Vol. 49, No. 3, 1210-1243, 2011.
doi:10.1137/090776202 Google Scholar
36. Babuska, I. and B. Q. Guo, "Approximation properties of the h-p version of the finite element method," Computer Methods in Appl. Mechanics Engineering, Vol. 133, 319-346, 1996.
doi:10.1016/0045-7825(95)00946-9 Google Scholar
37. Schmidt, K. and P. Kauf, "Computation of the band structure of two-dimensional photonic crystals with hp finite elements," Computer Methods in Appl. Mechanics Engineering, Vol. 198, 1249-1259, Mar. 2009.
doi:10.1016/j.cma.2008.06.009 Google Scholar
38. Babushka, I. and W. Rheinbolt, "A posteriori analysis for adaptive finite element computations," SIAM J. Numer. Anal., Vol. 15, 736-754, 1978. Google Scholar
39. Ainsworth, M. and J. T. Oden, "A posteriori error estimation in finite element analysis," Computer Methods in Appl. Mechanics Engineering, Vol. 142, No. 1-2, 1-88, 1997.
doi:10.1016/S0045-7825(96)01107-3 Google Scholar
40. Ainsworth, M. and B. Senior, "An adaptive refinement strategy for hp-finite element computations," Appl. Numerical Mathematics, Vol. 26, 165-178, 1998.
doi:10.1016/S0168-9274(97)00083-4 Google Scholar
41. Becker, R. and R. Rannacher, "An optimal control approach to a posteriori error estimation in finite element methods," Acta Numerica, Vol. 10, No. 1, 1-102, 2001. Google Scholar
42. Demkowicz, L., Computing with hp-adaptive Finite Elements: One and Two Dimensional Elliptic and Maxwell Problems,, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science, 2006.
doi:10.1201/9781420011685
43. Schnepp, S. M. and T. Weiland, "Efficient large scale electromagnetic simulations using dynamically adapted meshes with the discontinuous Galerkin method," Journal of Computational and Applied Mathematics, Vol. 236, No. 18, 4909-4924, 2011.
doi:10.1016/j.cam.2011.12.005 Google Scholar
44. Wihler, T. P., "An hp-adaptive strategy based on continuous Sobolev embeddings," Journal of Computational and Applied Mathematics, Vol. 235, No. 8, 2731-2739, 2011.
doi:10.1016/j.cam.2010.11.023 Google Scholar
45. BÄurg, M. and W. Dofler, "Convergence of an adaptive hp finite element strategy in higher space-dimensions," Applied Numerical Mathematics, Vol. 61, No. 11, 1132-1146, 2011.
doi:10.1016/j.apnum.2011.07.008 Google Scholar
46. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.
47. Fang, Y., N.-H. Seong, and D. D. Dlott, "Measurement of the distribution of site enhancements in surface-enhanced Raman scattering," Science, Vol. 321, No. 5887, 388-392, 2008.
doi:10.1126/science.1159499 Google Scholar
48. Park, S. J. and R. E. Palmer, "Acoustic plasmon on the Au (111) surface," Physical Review Letters, Vol. 105, No. 1, 016801, 2010.
doi:10.1103/PhysRevLett.105.016801 Google Scholar
49. Pohl, K., B. Diaconescu, G. Vercelli, L. Vattuone, V. M. Silkin, E. V. Chulkov, P. M. Echenique, and M. Rocca, "Acoustic surface plasmon on Cu (111)," EPL (Europhysics Letters), Vol. 90, No. 5, 57006, 2010.
doi:10.1209/0295-5075/90/57006 Google Scholar
50. Vattuone, L., M. Smerieri, T. Langer, C. Tegenkamp, H. Pfnur, V. M. Silkin, E. V. Chulkov, P. M. Echenique, and M. Rocca, "Correlated motion of electrons on the Au (111) surface: Anomalous acoustic surface-plasmon dispersion and single-particle excitations," Physical Review Letters, Vol. 110, No. 12, 127405, 2013.
doi:10.1103/PhysRevLett.110.127405 Google Scholar
51. Vattuone, L., G. Vercelli, M. Smerieri, L. Savio, and M. Rocca, "Acoustic surface plasmon dispersion on nanostructured Cu (111)," Plasmonics, Vol. 7, No. 2, 323-329, 2012.
doi:10.1007/s11468-011-9310-8 Google Scholar
52. Politano, A., G. Chiarello, V. Formoso, R. G. Agostino, and E. Colavita, "Plasmon of shockley surface states in Cu (111): A high-resolution electron energy loss spectroscopy study," Physical Review B, Vol. 74, No. 8, 081401, 2006.
doi:10.1103/PhysRevB.74.081401 Google Scholar
53. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6 Google Scholar
54. Schmidt, K. and R. Kappeler, "Efficient computation of photonic crystal waveguide modes with dispersive material," Optics Express, Vol. 18, No. 7, 7307-7322, 2010.
doi:10.1364/OE.18.007307 Google Scholar
55. Frauenfelder, P. and C. Lage, "Concepts --- An object-oriented software package for partial differential equations," ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 36, No. 05, 937-951, 2002.
doi:10.1051/m2an:2002036 Google Scholar
56. Ramos, J. S. and A. Huerta, "Efficient unstructured quadrilateral mesh generation," International Journal for Numerical Methods in Engineering, Vol. 49, 1327-1350, 2010. Google Scholar
57. EZ4U, Mesh Generation Environment, , www.lacan.upc.edu/ez4u.htm. Google Scholar
58. Hafner, C., MaX-1: A Visual Electromagnetics Platform for PCs, John Wiley & Sons, Chichester, UK, 1999.
59. Hafner, C., Post-modern Electromagnetics: Using Intelligent Maxwell Solvers, Wiley, 1999.
60. Alparslan, A. and C. Hafner, "Analysis of photonic structures by the multiple multipole program with complex origin layered geometry Green's functions," Journal of Computational and Theoretical Nanoscience, Vol. 9, No. 3, 479-485, 2012.
doi:10.1166/jctn.2012.2049 Google Scholar
61., COMSOL Multiphysics, http://www.comsol.com/.
doi:10.1166/jctn.2012.2049 Google Scholar